Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Maria Nădejde
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2019) 7: 551–566.
Published: 01 September 2019
FIGURES
| View All (5)
Abstract
View article
PDF
Until now, grammatical error correction (GEC) has been primarily evaluated on text written by non-native English speakers, with a focus on student essays. This paper enables GEC development on text written by native speakers by providing a new data set and metric. We present a multiple-reference test corpus for GEC that includes 4,000 sentences in two new domains ( formal and informal writing by native English speakers) and 2,000 sentences from a diverse set of non-native student writing . We also collect human judgments of several GEC systems on this new test set and perform a meta-evaluation, assessing how reliable automatic metrics are across these domains. We find that commonly used GEC metrics have inconsistent performance across domains, and therefore we propose a new ensemble metric that is robust on all three domains of text.