Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Marianna Apidianaki
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 825–844.
Published: 02 August 2021
FIGURES
| View All (10)
Abstract
View article
PDF
Pre-trained language models (LMs) encode rich information about linguistic structure but their knowledge about lexical polysemy remains unclear. We propose a novel experimental setup for analyzing this knowledge in LMs specifically trained for different languages (English, French, Spanish, and Greek) and in multilingual BERT. We perform our analysis on datasets carefully designed to reflect different sense distributions, and control for parameters that are highly correlated with polysemy such as frequency and grammatical category. We demonstrate that BERT-derived representations reflect words’ polysemy level and their partitionability into senses. Polysemy-related information is more clearly present in English BERT embeddings, but models in other languages also manage to establish relevant distinctions between words at different polysemy levels. Our results contribute to a better understanding of the knowledge encoded in contextualized representations and open up new avenues for multilingual lexical semantics research.