Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Marie-Francine Moens
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2024) 12: 264–282.
Published: 09 April 2024
FIGURES
| View All (6)
Abstract
View article
PDF
Recognizing visual entities in a natural language sentence and arranging them in a 2D spatial layout require a compositional understanding of language and space. This task of layout prediction is valuable in text-to-image synthesis as it allows localized and controlled in-painting of the image. In this comparative study it is shown that we can predict layouts from language representations that implicitly or explicitly encode sentence syntax, if the sentences mention similar entity-relationships to the ones seen during training. To test compositional understanding, we collect a test set of grammatically correct sentences and layouts describing compositions of entities and relations that unlikely have been seen during training. Performance on this test set substantially drops, showing that current models rely on correlations in the training data and have difficulties in understanding the structure of the input sentences. We propose a novel structural loss function that better enforces the syntactic structure of the input sentence and show large performance gains in the task of 2D spatial layout prediction conditioned on text. The loss has the potential to be used in other generation tasks where a tree-like structure underlies the conditioning modality. Code, trained models, and the USCOCO evaluation set are available via Github. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2018) 6: 133–144.
Published: 01 February 2018
Abstract
View article
PDF
Spatial understanding is crucial in many real-world problems, yet little progress has been made towards building representations that capture spatial knowledge. Here, we move one step forward in this direction and learn such representations by leveraging a task consisting in predicting continuous 2D spatial arrangements of objects given object-relationship-object instances (e.g., “cat under chair”) and a simple neural network model that learns the task from annotated images. We show that the model succeeds in this task and, furthermore, that it is capable of predicting correct spatial arrangements for unseen objects if either CNN features or word embeddings of the objects are provided. The differences between visual and linguistic features are discussed. Next, to evaluate the spatial representations learned in the previous task, we introduce a task and a dataset consisting in a set of crowdsourced human ratings of spatial similarity for object pairs. We find that both CNN (convolutional neural network) features and word embeddings predict human judgments of similarity well and that these vectors can be further specialized in spatial knowledge if we update them when training the model that predicts spatial arrangements of objects. Overall, this paper paves the way towards building distributed spatial representations , contributing to the understanding of spatial expressions in language.