Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-6 of 6
Mark Johnson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2018) 6: 703–717.
Published: 01 December 2018
Abstract
View article
PDF
This paper presents a new method for learning typed entailment graphs from text. We extract predicate-argument structures from multiple-source news corpora, and compute local distributional similarity scores to learn entailments between predicates with typed arguments (e.g., person contracted disease ). Previous work has used transitivity constraints to improve local decisions, but these constraints are intractable on large graphs. We instead propose a scalable method that learns globally consistent similarity scores based on new soft constraints that consider both the structures across typed entailment graphs and inside each graph. Learning takes only a few hours to run over 100K predicates and our results show large improvements over local similarity scores on two entailment data sets. We further show improvements over paraphrases and entailments from the Paraphrase Database, and prior state-of-the-art entailment graphs. We show that the entailment graphs improve performance in a downstream task.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2015) 3: 598–599.
Published: 01 December 2015
Abstract
View article
PDF
Change in clustering and classification results due to the dmm and lf-dmm bugs.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2015) 3: 299–313.
Published: 01 June 2015
Abstract
View article
PDF
Probabilistic topic models are widely used to discover latent topics in document collections, while latent feature vector representations of words have been used to obtain high performance in many NLP tasks. In this paper, we extend two different Dirichlet multinomial topic models by incorporating latent feature vector representations of words trained on very large corpora to improve the word-topic mapping learnt on a smaller corpus. Experimental results show that by using information from the external corpora, our new models produce significant improvements on topic coherence, document clustering and document classification tasks, especially on datasets with few or short documents.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2014) 2: 131–142.
Published: 01 April 2014
Abstract
View article
PDF
We present an incremental dependency parsing model that jointly performs disfluency detection. The model handles speech repairs using a novel non-monotonic transition system, and includes several novel classes of features. For comparison, we evaluated two pipeline systems, using state-of-the-art disfluency detectors. The joint model performed better on both tasks, with a parse accuracy of 90.5% and 84.0% accuracy at disfluency detection. The model runs in expected linear time, and processes over 550 tokens a second.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2014) 2: 93–104.
Published: 01 February 2014
Abstract
View article
PDF
Stress has long been established as a major cue in word segmentation for English infants. We show that enabling a current state-of-the-art Bayesian word segmentation model to take advantage of stress cues noticeably improves its performance. We find that the improvements range from 10 to 4%, depending on both the use of phonotactic cues and, to a lesser extent, the amount of evidence available to the learner. We also find that in particular early on, stress cues are much more useful for our model than phonotactic cues by themselves, consistent with the finding that children do seem to use stress cues before they use phonotactic cues. Finally, we study how the model’s knowledge about stress patterns evolves over time. We not only find that our model correctly acquires the most frequent patterns relatively quickly but also that the Unique Stress Constraint that is at the heart of a previously proposed model does not need to be built in but can be acquired jointly with word segmentation.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2013) 1: 315–326.
Published: 01 July 2013
Abstract
View article
PDF
Grounded language learning, the task of mapping from natural language to a representation of meaning, has attracted more and more interest in recent years. In most work on this topic, however, utterances in a conversation are treated independently and discourse structure information is largely ignored. In the context of language acquisition, this independence assumption discards cues that are important to the learner, e.g., the fact that consecutive utterances are likely to share the same referent (Frank et al., 2013). The current paper describes an approach to the problem of simultaneously modeling grounded language at the sentence and discourse levels. We combine ideas from parsing and grammar induction to produce a parser that can handle long input strings with thousands of tokens, creating parse trees that represent full discourses. By casting grounded language learning as a grammatical inference task, we use our parser to extend the work of Johnson et al. (2012), investigating the importance of discourse continuity in children’s language acquisition and its interaction with social cues. Our model boosts performance in a language acquisition task and yields good discourse segmentations compared with human annotators.