Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Masamune Kobayashi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2024) 12: 837–855.
Published: 15 July 2024
FIGURES
| View All (5)
Abstract
View article
PDF
Metrics are the foundation for automatic evaluation in grammatical error correction (GEC), with their evaluation of the metrics (meta-evaluation) relying on their correlation with human judgments. However, conventional meta-evaluations in English GEC encounter several challenges, including biases caused by inconsistencies in evaluation granularity and an outdated setup using classical systems. These problems can lead to misinterpretation of metrics and potentially hinder the applicability of GEC techniques. To address these issues, this paper proposes SEEDA, a new dataset for GEC meta-evaluation. SEEDA consists of corrections with human ratings along two different granularities: edit-based and sentence-based , covering 12 state-of-the-art systems including large language models, and two human corrections with different focuses. The results of improved correlations by aligning the granularity in the sentence-level meta-evaluation suggest that edit-based metrics may have been underestimated in existing studies. Furthermore, correlations of most metrics decrease when changing from classical to neural systems, indicating that traditional metrics are relatively poor at evaluating fluently corrected sentences with many edits.