Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Masato Hagiwara
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2020) 8: 247–263.
Published: 01 April 2020
FIGURES
| View All (5)
Abstract
View article
PDF
We describe a method for rapidly creating language proficiency assessments, and provide experimental evidence that such tests can be valid, reliable, and secure. Our approach is the first to use machine learning and natural language processing to induce proficiency scales based on a given standard, and then use linguistic models to estimate item difficulty directly for computer-adaptive testing. This alleviates the need for expensive pilot testing with human subjects. We used these methods to develop an online proficiency exam called the Duolingo English Test, and demonstrate that its scores align significantly with other high-stakes English assessments. Furthermore, our approach produces test scores that are highly reliable, while generating item banks large enough to satisfy security requirements.