Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Masato Mita
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2024) 12: 1268–1289.
Published: 02 October 2024
FIGURES
| View All (5)
Abstract
View article
PDF
Recent models for natural language understanding are inclined to exploit simple patterns in datasets, commonly known as shortcuts . These shortcuts hinge on spurious correlations between labels and latent features existing in the training data. At inference time, shortcut-dependent models are likely to generate erroneous predictions under distribution shifts, particularly when some latent features are no longer correlated with the labels. To avoid this, previous studies have trained models to eliminate the reliance on shortcuts. In this study, we explore a different direction: pessimistically aggregating the predictions of a mixture-of-experts, assuming each expert captures relatively different latent features. The experimental results demonstrate that our post-hoc control over the experts significantly enhances the model’s robustness to the distribution shift in shortcuts. Additionally, we show that our approach has some practical advantages. We also analyze our model and provide results to support the assumption. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2024) 12: 837–855.
Published: 15 July 2024
FIGURES
| View All (5)
Abstract
View article
PDF
Metrics are the foundation for automatic evaluation in grammatical error correction (GEC), with their evaluation of the metrics (meta-evaluation) relying on their correlation with human judgments. However, conventional meta-evaluations in English GEC encounter several challenges, including biases caused by inconsistencies in evaluation granularity and an outdated setup using classical systems. These problems can lead to misinterpretation of metrics and potentially hinder the applicability of GEC techniques. To address these issues, this paper proposes SEEDA, a new dataset for GEC meta-evaluation. SEEDA consists of corrections with human ratings along two different granularities: edit-based and sentence-based , covering 12 state-of-the-art systems including large language models, and two human corrections with different focuses. The results of improved correlations by aligning the granularity in the sentence-level meta-evaluation suggest that edit-based metrics may have been underestimated in existing studies. Furthermore, correlations of most metrics decrease when changing from classical to neural systems, indicating that traditional metrics are relatively poor at evaluating fluently corrected sentences with many edits.