Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Matthias Sperber
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2020) 8: 695–709.
Published: 01 November 2020
FIGURES
| View All (8)
Abstract
View article
PDF
The conventional paradigm in speech translation starts with a speech recognition step to generate transcripts, followed by a translation step with the automatic transcripts as input. To address various shortcomings of this paradigm, recent work explores end-to-end trainable direct models that translate without transcribing. However, transcripts can be an indispensable output in practical applications, which often display transcripts alongside the translations to users. We make this common requirement explicit and explore the task of jointly transcribing and translating speech. Although high accuracy of transcript and translation are crucial, even highly accurate systems can suffer from inconsistencies between both outputs that degrade the user experience. We introduce a methodology to evaluate consistency and compare several modeling approaches, including the traditional cascaded approach and end-to-end models. We find that direct models are poorly suited to the joint transcription/translation task, but that end-to-end models that feature a coupled inference procedure are able to achieve strong consistency. We further introduce simple techniques for directly optimizing for consistency, and analyze the resulting trade-offs between consistency, transcription accuracy, and translation accuracy. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2019) 7: 313–325.
Published: 01 June 2019
FIGURES
| View All (8)
Abstract
View article
PDF
Speech translation has traditionally been approached through cascaded models consisting of a speech recognizer trained on a corpus of transcribed speech, and a machine translation system trained on parallel texts. Several recent works have shown the feasibility of collapsing the cascade into a single, direct model that can be trained in an end-to-end fashion on a corpus of translated speech. However, experiments are inconclusive on whether the cascade or the direct model is stronger, and have only been conducted under the unrealistic assumption that both are trained on equal amounts of data, ignoring other available speech recognition and machine translation corpora. In this paper, we demonstrate that direct speech translation models require more data to perform well than cascaded models, and although they allow including auxiliary data through multi-task training, they are poor at exploiting such data, putting them at a severe disadvantage. As a remedy, we propose the use of end- to-end trainable models with two attention mechanisms, the first establishing source speech to source text alignments, the second modeling source to target text alignment. We show that such models naturally decompose into multi-task–trainable recognition and translation tasks and propose an attention-passing technique that alleviates error propagation issues in a previous formulation of a model with two attention stages. Our proposed model outperforms all examined baselines and is able to exploit auxiliary training data much more effectively than direct attentional models.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2014) 2: 169–180.
Published: 01 April 2014
Abstract
View article
PDF
In this paper, we study the problem of manually correcting automatic annotations of natural language in as efficient a manner as possible. We introduce a method for automatically segmenting a corpus into chunks such that many uncertain labels are grouped into the same chunk, while human supervision can be omitted altogether for other segments. A tradeoff must be found for segment sizes. Choosing short segments allows us to reduce the number of highly confident labels that are supervised by the annotator, which is useful because these labels are often already correct and supervising correct labels is a waste of effort. In contrast, long segments reduce the cognitive effort due to context switches. Our method helps find the segmentation that optimizes supervision efficiency by defining user models to predict the cost and utility of supervising each segment and solving a constrained optimization problem balancing these contradictory objectives. A user study demonstrates noticeable gains over pre-segmented, confidence-ordered baselines on two natural language processing tasks: speech transcription and word segmentation.