Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Maximin Coavoux
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2019) 7: 73–89.
Published: 01 April 2019
FIGURES
Abstract
View article
PDF
Lexicalized parsing models are based on the assumptions that (i) constituents are organized around a lexical head and (ii) bilexical statistics are crucial to solve ambiguities. In this paper, we introduce an unlexicalized transition-based parser for discontinuous constituency structures, based on a structure-label transition system and a bi-LSTM scoring system. We compare it with lexicalized parsing models in order to address the question of lexicalization in the context of discontinuous constituency parsing. Our experiments show that unlexicalized models systematically achieve higher results than lexicalized models, and provide additional empirical evidence that lexicalization is not necessary to achieve strong parsing results. Our best unlexicalized model sets a new state of the art on English and German discontinuous constituency treebanks. We further provide a per-phenomenon analysis of its errors on discontinuous constituents.