Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-20 of 20
Mirella Lapata
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 1754–1771.
Published: 21 December 2023
FIGURES
Abstract
View article
PDF
The availability of large, high-quality datasets has been a major driver of recent progress in question answering (QA). Such annotated datasets, however, are difficult and costly to collect, and rarely exist in languages other than English, rendering QA technology inaccessible to underrepresented languages. An alternative to building large monolingual training datasets is to leverage pre-trained language models (PLMs) under a few-shot learning setting. Our approach, QAmeleon , uses a PLM to automatically generate multilingual data upon which QA models are fine-tuned, thus avoiding costly annotation. Prompt tuning the PLM with only five examples per language delivers accuracy superior to translation-based baselines; it bridges nearly 60% of the gap between an English-only baseline and a fully-supervised upper bound fine-tuned on almost 50,000 hand-labeled examples; and consistently leads to improvements compared to directly fine-tuning a QA model on labeled examples in low resource settings. Experiments on the TyDiqa-GoldP and MLQA benchmarks show that few-shot prompt tuning for data synthesis scales across languages and is a viable alternative to large-scale annotation. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 1432–1450.
Published: 16 November 2023
FIGURES
Abstract
View article
PDF
Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data. Previous work has primarily considered silver-standard data augmentation or zero-shot methods; exploiting few-shot gold data is comparatively unexplored. We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between probabilistic latent variables using Optimal Transport. We demonstrate how this direct guidance improves parsing from natural languages using fewer examples and less training. We evaluate our method on two datasets, MTOP and MultiATIS++SQL, establishing state-of-the-art results under a few-shot cross-lingual regime. Ablation studies further reveal that our method improves performance even without parallel input translations. In addition, we show that our model better captures cross-lingual structure in the latent space to improve semantic representation similarity. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 974–996.
Published: 15 August 2023
Abstract
View article
PDF
The ability to convey relevant and faithful information is critical for many tasks in conditional generation and yet remains elusive for neural seq-to-seq models whose outputs often reveal hallucinations and fail to correctly cover important details. In this work, we advocate planning as a useful intermediate representation for rendering conditional generation less opaque and more grounded. We propose a new conceptualization of text plans as a sequence of question-answer (QA) pairs and enhance existing datasets (e.g., for summarization) with a QA blueprint operating as a proxy for content selection (i.e., what to say) and planning (i.e., in what order). We obtain blueprints automatically by exploiting state-of-the-art question generation technology and convert input-output pairs into input-blueprint-output tuples. We develop Transformer-based models, each varying in how they incorporate the blueprint in the generated output (e.g., as a global plan or iteratively). Evaluation across metrics and datasets demonstrates that blueprint models are more factual than alternatives which do not resort to planning and allow tighter control of the generation output.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 49–67.
Published: 12 January 2023
FIGURES
| View All (4)
Abstract
View article
PDF
Localizing a semantic parser to support new languages requires effective cross-lingual generalization. Recent work has found success with machine-translation or zero-shot methods, although these approaches can struggle to model how native speakers ask questions. We consider how to effectively leverage minimal annotated examples in new languages for few-shot cross-lingual semantic parsing. We introduce a first-order meta-learning algorithm to train a semantic parser with maximal sample efficiency during cross-lingual transfer. Our algorithm uses high-resource languages to train the parser and simultaneously optimizes for cross-lingual generalization to lower-resource languages. Results across six languages on ATIS demonstrate that our combination of generalization steps yields accurate semantic parsers sampling ≤10% of source training data in each new language. Our approach also trains a competitive model on Spider using English with generalization to Chinese similarly sampling ≤10% of training data. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2022) 10: 1440–1454.
Published: 23 December 2022
FIGURES
Abstract
View article
PDF
To proactively offer social media users a safe online experience, there is a need for systems that can detect harmful posts and promptly alert platform moderators. In order to guarantee the enforcement of a consistent policy, moderators are provided with detailed guidelines. In contrast, most state-of-the-art models learn what abuse is from labeled examples and as a result base their predictions on spurious cues, such as the presence of group identifiers, which can be unreliable. In this work we introduce the concept of policy-aware abuse detection, abandoning the unrealistic expectation that systems can reliably learn which phenomena constitute abuse from inspecting the data alone. We propose a machine-friendly representation of the policy that moderators wish to enforce, by breaking it down into a collection of intents and slots. We collect and annotate a dataset of 3,535 English posts with such slots, and show how architectures for intent classification and slot filling can be used for abuse detection, while providing a rationale for model decisions. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2022) 10: 697–715.
Published: 08 June 2022
FIGURES
| View All (4)
Abstract
View article
PDF
We consider the task of data-to-text generation, which aims to create textual output from non-linguistic input. We focus on generating long-form text, that is, documents with multiple paragraphs, and propose a neural model enhanced with a planning component responsible for organizing high-level information in a coherent and meaningful way. We infer latent plans sequentially with a structured variational model, while interleaving the steps of planning and generation. Text is generated by conditioning on previous variational decisions and previously generated text. Experiments on two data-to-text benchmarks ( RotoWire and MLB) show that our model outperforms strong baselines and is sample-efficient in the face of limited training data (e.g., a few hundred instances).
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2022) 10: 623–638.
Published: 04 May 2022
FIGURES
Abstract
View article
PDF
The availability of large-scale datasets has driven the development of neural models that create generic summaries for single or multiple documents. For query-focused summarization (QFS), labeled training data in the form of queries, documents, and summaries is not readily available. We provide a unified modeling framework for any kind of summarization, under the assumption that all summaries are a response to a query, which is observed in the case of QFS and latent in the case of generic summarization. We model queries as discrete latent variables over document tokens, and learn representations compatible with observed and unobserved query verbalizations. Our framework formulates summarization as a generative process, and jointly optimizes a latent query model and a conditional language model . Despite learning from generic summarization data only, our approach outperforms strong comparison systems across benchmarks, query types, document settings, and target domains. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 1197–1212.
Published: 05 November 2021
FIGURES
| View All (6)
Abstract
View article
PDF
We present a memory-based model for context- dependent semantic parsing. Previous approaches focus on enabling the decoder to copy or modify the parse from the previous utterance, assuming there is a dependency between the current and previous parses. In this work, we propose to represent contextual information using an external memory. We learn a context memory controller that manages the memory by maintaining the cumulative meaning of sequential user utterances. We evaluate our approach on three semantic parsing benchmarks. Experimental results show that our model can better process context-dependent information and demonstrates improved performance without using task-specific decoders.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 510–527.
Published: 27 May 2021
FIGURES
Abstract
View article
PDF
Recent approaches to data-to-text generation have adopted the very successful encoder-decoder architecture or variants thereof. These models generate text that is fluent (but often imprecise) and perform quite poorly at selecting appropriate content and ordering it coherently. To overcome some of these issues, we propose a neural model with a macro planning stage followed by a generation stage reminiscent of traditional methods which embrace separate modules for planning and surface realization. Macro plans represent high level organization of important content such as entities, events, and their interactions; they are learned from data and given as input to the generator. Extensive experiments on two data-to-text benchmarks ( RotoWire and MLB) show that our approach outperforms competitive baselines in terms of automatic and human evaluation.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 277–293.
Published: 31 March 2021
FIGURES
| View All (6)
Abstract
View article
PDF
We present the Quantized Transformer (QT), an unsupervised system for extractive opinion summarization. QT is inspired by Vector- Quantized Variational Autoencoders, which we repurpose for popularity-driven summarization. It uses a clustering interpretation of the quantized space and a novel extraction algorithm to discover popular opinions among hundreds of reviews, a significant step towards opinion summarization of practical scope. In addition, QT enables controllable summarization without further training, by utilizing properties of the quantized space to extract aspect-specific summaries. We also make publicly available S pace , a large-scale evaluation benchmark for opinion summarizers, comprising general and aspect-specific summaries for 50 hotels. Experiments demonstrate the promise of our approach, which is validated by human studies where judges showed clear preference for our method over competitive baselines.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2019) 7: 581–596.
Published: 01 September 2019
FIGURES
| View All (4)
Abstract
View article
PDF
In this paper we introduce domain detection as a new natural language processing task. We argue that the ability to detect textual segments that are domain-heavy (i.e., sentences or phrases that are representative of and provide evidence for a given domain) could enhance the robustness and portability of various text classification applications. We propose an encoder-detector framework for domain detection and bootstrap classifiers with multiple instance learning. The model is hierarchically organized and suited to multilabel classification. We demonstrate that despite learning with minimal supervision, our model can be applied to text spans of different granularities, languages, and genres. We also showcase the potential of domain detection for text summarization.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2019) 7: 343–356.
Published: 01 June 2019
FIGURES
| View All (6)
Abstract
View article
PDF
In this paper we focus on learning dependency aware representations for semantic role labeling without recourse to an external parser. The backbone of our model is an LSTM-based semantic role labeler jointly trained with two auxiliary tasks: predicting the dependency label of a word and whether there exists an arc linking it to the predicate. The auxiliary tasks provide syntactic information that is specific to semantic role labeling and are learned from training data (dependency annotations) without relying on existing dependency parsers, which can be noisy (e.g., on out-of-domain data or infrequent constructions). Experimental results on the CoNLL-2009 benchmark dataset show that our model outperforms the state of the art in English, and consistently improves performance in other languages, including Chinese, German, and Spanish.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2018) 6: 1–15.
Published: 01 January 2018
Abstract
View article
PDF
In this paper we argue that crime drama exemplified in television programs such as CSI: Crime Scene Investigation is an ideal testbed for approximating real-world natural language understanding and the complex inferences associated with it. We propose to treat crime drama as a new inference task, capitalizing on the fact that each episode poses the same basic question (i.e., who committed the crime) and naturally provides the answer when the perpetrator is revealed. We develop a new dataset based on CSI episodes, formalize perpetrator identification as a sequence labeling problem, and develop an LSTM-based model which learns from multi-modal data. Experimental results show that an incremental inference strategy is key to making accurate guesses as well as learning from representations fusing textual, visual, and acoustic input.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2018) 6: 63–75.
Published: 01 January 2018
Abstract
View article
PDF
In this paper, we focus on learning structure-aware document representations from data without recourse to a discourse parser or additional annotations. Drawing inspiration from recent efforts to empower neural networks with a structural bias (Cheng et al., 2016; Kim et al., 2017), we propose a model that can encode a document while automatically inducing rich structural dependencies. Specifically, we embed a differentiable non-projective parsing algorithm into a neural model and use attention mechanisms to incorporate the structural biases. Experimental evaluations across different tasks and datasets show that the proposed model achieves state-of-the-art results on document modeling tasks while inducing intermediate structures which are both interpretable and meaningful.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2018) 6: 17–31.
Published: 01 January 2018
Abstract
View article
PDF
We consider the task of fine-grained sentiment analysis from the perspective of multiple instance learning (MIL). Our neural model is trained on document sentiment labels, and learns to predict the sentiment of text segments, i.e. sentences or elementary discourse units (EDUs), without segment-level supervision. We introduce an attention-based polarity scoring method for identifying positive and negative text snippets and a new dataset which we call S po T (as shorthand for S egment-level PO lari T y annotations) for evaluating MIL-style sentiment models like ours. Experimental results demonstrate superior performance against multiple baselines, whereas a judgement elicitation study shows that EDU-level opinion extraction produces more informative summaries than sentence-based alternatives.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 127–140.
Published: 01 April 2016
Abstract
View article
PDF
The strongly typed syntax of grammar formalisms such as CCG, TAG, LFG and HPSG offers a synchronous framework for deriving syntactic structures and semantic logical forms. In contrast—partly due to the lack of a strong type system—dependency structures are easy to annotate and have become a widely used form of syntactic analysis for many languages. However, the lack of a type system makes a formal mechanism for deriving logical forms from dependency structures challenging. We address this by introducing a robust system based on the lambda calculus for deriving neo-Davidsonian logical forms from dependency trees. These logical forms are then used for semantic parsing of natural language to Freebase. Experiments on the Free917 and Web-Questions datasets show that our representation is superior to the original dependency trees and that it outperforms a CCG-based representation on this task. Compared to prior work, we obtain the strongest result to date on Free917 and competitive results on WebQuestions.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 31–45.
Published: 01 February 2016
Abstract
View article
PDF
Word meanings change over time and an automated procedure for extracting this information from text would be useful for historical exploratory studies, information retrieval or question answering. We present a dynamic Bayesian model of diachronic meaning change, which infers temporal word representations as a set of senses and their prevalence. Unlike previous work, we explicitly model language change as a smooth, gradual process. We experimentally show that this modeling decision is beneficial: our model performs competitively on meaning change detection tasks whilst inducing discernible word senses and their development over time. Application of our model to the SemEval-2015 temporal classification benchmark datasets further reveals that it performs on par with highly optimized task-specific systems.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2015) 3: 449–460.
Published: 01 August 2015
Abstract
View article
PDF
Frame semantic representations have been useful in several applications ranging from text-to-scene generation, to question answering and social network analysis. Predicting such representations from raw text is, however, a challenging task and corresponding models are typically only trained on a small set of sentence-level annotations. In this paper, we present a semantic role labeling system that takes into account sentence and discourse context. We introduce several new features which we motivate based on linguistic insights and experimentally demonstrate that they lead to significant improvements over the current state-of-the-art in FrameNet-based semantic role labeling.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2015) 3: 73–85.
Published: 01 February 2015
Abstract
View article
PDF
Online discussion forums and community question-answering websites provide one of the primary avenues for online users to share information. In this paper, we propose text mining techniques which aid users navigate troubleshooting-oriented data such as questions asked on forums and their suggested solutions. We introduce Bayesian generative models of the troubleshooting data and apply them to two interrelated tasks: (a) predicting the complexity of the solutions (e.g., plugging a keyboard in the computer is easier compared to installing a special driver) and (b) presenting them in a ranked order from least to most complex. Experimental results show that our models are on par with human performance on these tasks, while outperforming baselines based on solution length or readability.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2014) 2: 377–392.
Published: 01 October 2014
Abstract
View article
PDF
In this paper we introduce a novel semantic parsing approach to query Freebase in natural language without requiring manual annotations or question-answer pairs. Our key insight is to represent natural language via semantic graphs whose topology shares many commonalities with Freebase. Given this representation, we conceptualize semantic parsing as a graph matching problem. Our model converts sentences to semantic graphs using CCG and subsequently grounds them to Freebase guided by denotations as a form of weak supervision. Evaluation experiments on a subset of the F ree 917 and W eb Q uestions benchmark datasets show our semantic parser improves over the state of the art.