Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Moran Mizrahi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2024) 12: 933–949.
Published: 01 August 2024
FIGURES
| View All (7)
Abstract
View article
PDF
Recent advances in LLMs have led to an abundance of evaluation benchmarks, which typically rely on a single instruction template per task. We create a large-scale collection of instruction paraphrases and comprehensively analyze the brittleness introduced by single-prompt evaluations across 6.5M instances, involving 20 different LLMs and 39 tasks from 3 benchmarks. We find that different instruction templates lead to very different performance, both absolute and relative. Instead, we propose a set of diverse metrics on multiple instruction paraphrases , specifically tailored for different use cases (e.g., LLM vs. downstream development), ensuring a more reliable and meaningful assessment of LLM capabilities. We show that our metrics provide new insights into the strengths and limitations of current LLMs.