Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Nathanael Chambers
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 1283–1300.
Published: 02 November 2023
FIGURES
| View All (10)
Abstract
View article
PDF
The events in a narrative are understood as a coherent whole via the underlying states of their participants. Often, these participant states are not explicitly mentioned, instead left to be inferred by the reader. A model that understands narratives should likewise infer these implicit states, and even reason about the impact of changes to these states on the narrative. To facilitate this goal, we introduce a new crowdsourced English-language, Pa rticipant Sta tes dataset, PASTA . This dataset contains inferable participant states; a counterfactual perturbation to each state; and the changes to the story that would be necessary if the counterfactual were true. We introduce three state-based reasoning tasks that test for the ability to infer when a state is entailed by a story, to revise a story conditioned on a counterfactual state, and to explain the most likely state change given a revised story. Experiments show that today’s LLMs can reason about states to some degree, but there is large room for improvement, especially in problems requiring access and ability to reason with diverse types of knowledge (e.g., physical, numerical, factual). 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2018) 6: 703–717.
Published: 01 December 2018
Abstract
View article
PDF
This paper presents a new method for learning typed entailment graphs from text. We extract predicate-argument structures from multiple-source news corpora, and compute local distributional similarity scores to learn entailments between predicates with typed arguments (e.g., person contracted disease ). Previous work has used transitivity constraints to improve local decisions, but these constraints are intractable on large graphs. We instead propose a scalable method that learns globally consistent similarity scores based on new soft constraints that consider both the structures across typed entailment graphs and inside each graph. Learning takes only a few hours to run over 100K predicates and our results show large improvements over local similarity scores on two entailment data sets. We further show improvements over paraphrases and entailments from the Paraphrase Database, and prior state-of-the-art entailment graphs. We show that the entailment graphs improve performance in a downstream task.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2014) 2: 273–284.
Published: 01 October 2014
Abstract
View article
PDF
The past 10 years of event ordering research has focused on learning partial orderings over document events and time expressions. The most popular corpus, the TimeBank, contains a small subset of the possible ordering graph. Many evaluations follow suit by only testing certain pairs of events (e.g., only main verbs of neighboring sentences). This has led most research to focus on specific learners for partial labelings. This paper attempts to nudge the discussion from identifying some relations to all relations. We present new experiments on strongly connected event graphs that contain ∼10 times more relations per document than the TimeBank. We also describe a shift away from the single learner to a sieve-based architecture that naturally blends multiple learners into a precision-ranked cascade of sieves. Each sieve adds labels to the event graph one at a time, and earlier sieves inform later ones through transitive closure. This paper thus describes innovations in both approach and task. We experiment on the densest event graphs to date and show a 14% gain over state-of-the-art.