Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Nils Reimers
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2022) 10: 503–521.
Published: 04 May 2022
FIGURES
| View All (4)
Abstract
View article
PDF
Current state-of-the-art approaches to cross- modal retrieval process text and visual input jointly, relying on Transformer-based architectures with cross-attention mechanisms that attend over all words and objects in an image. While offering unmatched retrieval performance, such models: 1) are typically pretrained from scratch and thus less scalable, 2) suffer from huge retrieval latency and inefficiency issues, which makes them impractical in realistic applications. To address these crucial gaps towards both improved and efficient cross- modal retrieval, we propose a novel fine-tuning framework that turns any pretrained text-image multi-modal model into an efficient retrieval model. The framework is based on a cooperative retrieve-and-rerank approach that combines: 1) twin networks (i.e., a bi-encoder) to separately encode all items of a corpus, enabling efficient initial retrieval, and 2) a cross-encoder component for a more nuanced (i.e., smarter) ranking of the retrieved small set of items. We also propose to jointly fine- tune the two components with shared weights, yielding a more parameter-efficient model. Our experiments on a series of standard cross-modal retrieval benchmarks in monolingual, multilingual, and zero-shot setups, demonstrate improved accuracy and huge efficiency benefits over the state-of-the-art cross- encoders. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2018) 6: 77–89.
Published: 01 February 2018
Abstract
View article
PDF
Extracting the information from text when an event happened is challenging. Documents do not only report on current events, but also on past events as well as on future events. Often, the relevant time information for an event is scattered across the document. In this paper we present a novel method to automatically anchor events in time. To our knowledge it is the first approach that takes temporal information from the complete document into account. We created a decision tree that applies neural network based classifiers at its nodes. We use this tree to incrementally infer, in a stepwise manner, at which time frame an event happened. We evaluate the approach on the TimeBank-EventTime Corpus (Reimers et al., 2016) achieving an accuracy of 42.0% compared to an inter-annotator agreement (IAA) of 56.7%. For events that span over a single day we observe an accuracy improvement of 33.1 points compared to the state-of-the-art CAEVO system (Chambers et al., 2014). Without retraining, we apply this model to the SemEval-2015 Task 4 on automatic timeline generation and achieve an improvement of 4.01 points F 1 -score compared to the state-of-the-art. Our code is publically available.