Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Qi Liu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2022) 10: 555–572.
Published: 04 May 2022
FIGURES
| View All (5)
Abstract
View article
PDF
We present a memory-augmented approach to condition an autoregressive language model on a knowledge graph. We represent the graph as a collection of relation triples and retrieve relevant relations for a given context to improve text generation. Experiments on WikiText-103, WMT19, and enwik8 English datasets demonstrate that our approach produces a better language model in terms of perplexity and bits per character. We also show that relational memory improves coherence, is complementary to token-based memory, and enables causal interventions. Our model provides a simple yet effective way to combine an autoregressive language model and a knowledge graph for more coherent and logical generation.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 657–674.
Published: 08 July 2021
FIGURES
Abstract
View article
PDF
Direct decoding for task-oriented dialogue is known to suffer from the explaining-away effect, manifested in models that prefer short and generic responses. Here we argue for the use of Bayes’ theorem to factorize the dialogue task into two models, the distribution of the context given the response, and the prior for the response itself. This approach, an instantiation of the noisy channel model, both mitigates the explaining-away effect and allows the principled incorporation of large pretrained models for the response prior. We present extensive experiments showing that a noisy channel model decodes better responses compared to direct decoding and that a two-stage pretraining strategy, employing both open-domain and task-oriented dialogue data, improves over randomly initialized models.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2019) 7: 661–676.
Published: 01 November 2019
FIGURES
| View All (5)
Abstract
View article
PDF
Conventional neural autoregressive decoding commonly assumes a fixed left-to-right generation order, which may be sub-optimal. In this work, we propose a novel decoding algorithm— InDIGO—which supports flexible sequence generation in arbitrary orders through insertion operations. We extend Transformer, a state-of-the-art sequence generation model, to efficiently implement the proposed approach, enabling it to be trained with either a pre-defined generation order or adaptive orders obtained from beam-search. Experiments on four real-world tasks, including word order recovery, machine translation, image caption, and code generation, demonstrate that our algorithm can generate sequences following arbitrary orders, while achieving competitive or even better performance compared with the conventional left-to-right generation. The generated sequences show that InDIGO adopts adaptive generation orders based on input information.