Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Qianchu Liu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 1097–1113.
Published: 01 September 2023
FIGURES
| View All (5)
Abstract
View article
PDF
Label scarcity is a bottleneck for improving task performance in specialized domains. We propose a novel compositional transfer learning framework ( DoT5 1 ) for zero-shot domain transfer. Without access to in-domain labels, DoT5 jointly learns domain knowledge (from masked language modelling of unlabelled in-domain free text) and task knowledge (from task training on more readily available general-domain data) in a multi-task manner. To improve the transferability of task training, we design a strategy named NLGU: We simultaneously train natural language generation (NLG) for in-domain label-to-data generation, which enables data augmentation for self-finetuning and natural language understanding (NLU) for label prediction. We evaluate DoT5 on the biomedical domain and the resource-lean subdomain of radiology, focusing on natural language inference, text summarization, and embedding learning. DoT5 demonstrates the effectiveness of compositional transfer learning through multi-task learning. In particular, DoT5 outperforms the current state-of-the-art in zero-shot transfer by over 7 absolute points in accuracy on RadNLI. We validate DoT5 with ablations and a case study demonstrating its ability to solve challenging NLI examples requiring in-domain expertise.