Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Qiuyuan Huang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2024) 12: 247–263.
Published: 09 April 2024
FIGURES
Abstract
View article
PDF
An open-domain question answering (QA) system usually follows a retrieve-then-read paradigm, in which a retriever is used to retrieve relevant passages from a large corpus, and then a reader generates answers based on the retrieved passages and the original question. In this paper, we propose a simple and novel mutual learning framework to improve the performance of retrieve-then-read -style models via an intermediate module named the knowledge selector , which we train with reinforcement learning. The key benefits of our proposed intermediate module are: 1) no requirement for additional annotated question-passage pairs; 2) improvements in both retrieval and QA performance, as well as computational efficiency, compared to prior competitive retrieve-then-read models; 3) with no finetuning, improvement in the zero-shot performance of large-scale pre-trained language models, e.g., ChatGPT, by encapsulating the input with relevant knowledge without violating the input length constraint.