Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Raquel Fernández
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2022) 10: 1031–1050.
Published: 19 September 2022
FIGURES
| View All (6)
Abstract
View article
PDF
We investigate the extent to which modern neural language models are susceptible to structural priming, the phenomenon whereby the structure of a sentence makes the same structure more probable in a follow-up sentence. We explore how priming can be used to study the potential of these models to learn abstract structural information, which is a prerequisite for good performance on tasks that require natural language understanding skills. We introduce a novel metric and release Prime-LM , a large corpus where we control for various linguistic factors that interact with priming strength. We find that Transformer models indeed show evidence of structural priming, but also that the generalizations they learned are to some extent modulated by semantic information. Our experiments also show that the representations acquired by the models may not only encode abstract sequential structure but involve certain level of hierarchical syntactic information. More generally, our study shows that the priming paradigm is a useful, additional tool for gaining insights into the capacities of language models and opens the door to future priming-based investigations that probe the model’s internal states. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 1563–1579.
Published: 30 December 2021
FIGURES
| View All (5)
Abstract
View article
PDF
This study carries out a systematic intrinsic evaluation of the semantic representations learned by state-of-the-art pre-trained multimodal Transformers. These representations are claimed to be task-agnostic and shown to help on many downstream language-and-vision tasks. However, the extent to which they align with human semantic intuitions remains unclear. We experiment with various models and obtain static word representations from the contextualized ones they learn. We then evaluate them against the semantic judgments provided by human speakers. In line with previous evidence, we observe a generalized advantage of multimodal representations over language- only ones on concrete word pairs, but not on abstract ones. On the one hand, this confirms the effectiveness of these models to align language and vision, which results in better semantic representations for concepts that are grounded in images. On the other hand, models are shown to follow different representation learning patterns, which sheds some light on how and when they perform multimodal integration.