Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Reinald Kim Amplayo
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 974–996.
Published: 15 August 2023
Abstract
View article
PDF
The ability to convey relevant and faithful information is critical for many tasks in conditional generation and yet remains elusive for neural seq-to-seq models whose outputs often reveal hallucinations and fail to correctly cover important details. In this work, we advocate planning as a useful intermediate representation for rendering conditional generation less opaque and more grounded. We propose a new conceptualization of text plans as a sequence of question-answer (QA) pairs and enhance existing datasets (e.g., for summarization) with a QA blueprint operating as a proxy for content selection (i.e., what to say) and planning (i.e., in what order). We obtain blueprints automatically by exploiting state-of-the-art question generation technology and convert input-output pairs into input-blueprint-output tuples. We develop Transformer-based models, each varying in how they incorporate the blueprint in the generated output (e.g., as a global plan or iteratively). Evaluation across metrics and datasets demonstrates that blueprint models are more factual than alternatives which do not resort to planning and allow tighter control of the generation output.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 277–293.
Published: 31 March 2021
FIGURES
| View All (6)
Abstract
View article
PDF
We present the Quantized Transformer (QT), an unsupervised system for extractive opinion summarization. QT is inspired by Vector- Quantized Variational Autoencoders, which we repurpose for popularity-driven summarization. It uses a clustering interpretation of the quantized space and a novel extraction algorithm to discover popular opinions among hundreds of reviews, a significant step towards opinion summarization of practical scope. In addition, QT enables controllable summarization without further training, by utilizing properties of the quantized space to extract aspect-specific summaries. We also make publicly available S pace , a large-scale evaluation benchmark for opinion summarizers, comprising general and aspect-specific summaries for 50 hotels. Experiments demonstrate the promise of our approach, which is validated by human studies where judges showed clear preference for our method over competitive baselines.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2019) 7: 201–215.
Published: 01 April 2019
FIGURES
| View All (5)
Abstract
View article
PDF
The performance of text classification has improved tremendously using intelligently engineered neural-based models, especially those injecting categorical metadata as additional information, e.g., using user/product information for sentiment classification. This information has been used to modify parts of the model (e.g., word embeddings, attention mechanisms) such that results can be customized according to the metadata. We observe that current representation methods for categorical metadata, which are devised for human consumption, are not as effective as claimed in popular classification methods, outperformed even by simple concatenation of categorical features in the final layer of the sentence encoder. We conjecture that categorical features are harder to represent for machine use, as available context only indirectly describes the category, and even such context is often scarce (for tail category). To this end, we propose using basis vectors to effectively incorporate categorical metadata on various parts of a neural-based model. This additionally decreases the number of parameters dramatically, especially when the number of categorical features is large. Extensive experiments on various data sets with different properties are performed and show that through our method, we can represent categorical metadata more effectively to customize parts of the model, including unexplored ones, and increase the performance of the model greatly.