Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Roger P. Levy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 1451–1470.
Published: 14 December 2023
FIGURES
| View All (7)
Abstract
View article
PDF
Surprisal theory posits that less-predictable words should take more time to process, with word predictability quantified as surprisal, i.e., negative log probability in context. While evidence supporting the predictions of surprisal theory has been replicated widely, much of it has focused on a very narrow slice of data: native English speakers reading English texts. Indeed, no comprehensive multilingual analysis exists. We address this gap in the current literature by investigating the relationship between surprisal and reading times in eleven different languages, distributed across five language families. Deriving estimates from language models trained on monolingual and multilingual corpora, we test three predictions associated with surprisal theory: (i) whether surprisal is predictive of reading times, (ii) whether expected surprisal, i.e., contextual entropy, is predictive of reading times, and (iii) whether the linking function between surprisal and reading times is linear. We find that all three predictions are borne out crosslinguistically. By focusing on a more diverse set of languages, we argue that these results offer the most robust link to date between information theory and incremental language processing across languages.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 1624–1642.
Published: 14 December 2023
FIGURES
Abstract
View article
PDF
Over the past two decades, numerous studies have demonstrated how less-predictable (i.e., higher surprisal) words take more time to read. In general, these studies have implicitly assumed the reading process is purely responsive : Readers observe a new word and allocate time to process it as required. We argue that prior results are also compatible with a reading process that is at least partially anticipatory : Readers could make predictions about a future word and allocate time to process it based on their expectation. In this work, we operationalize this anticipation as a word’s contextual entropy. We assess the effect of anticipation on reading by comparing how well surprisal and contextual entropy predict reading times on four naturalistic reading datasets: two self-paced and two eye-tracking. Experimentally, across datasets and analyses, we find substantial evidence for effects of contextual entropy over surprisal on a word’s reading time (RT): In fact, entropy is sometimes better than surprisal in predicting a word’s RT. Spillover effects, however, are generally not captured by entropy, but only by surprisal. Further, we hypothesize four cognitive mechanisms through which contextual entropy could impact RTs—three of which we are able to design experiments to analyze. Overall, our results support a view of reading that is not just responsive, but also anticipatory. 1