Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Satoshi Nakamura
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2015) 3: 571–584.
Published: 01 December 2015
Abstract
View article
PDF
We propose a new method for semantic parsing of ambiguous and ungrammatical input, such as search queries. We do so by building on an existing semantic parsing framework that uses synchronous context free grammars (SCFG) to jointly model the input sentence and output meaning representation. We generalize this SCFG framework to allow not one, but multiple outputs. Using this formalism, we construct a grammar that takes an ambiguous input string and jointly maps it into both a meaning representation and a natural language paraphrase that is less ambiguous than the original input. This paraphrase can be used to disambiguate the meaning representation via verification using a language model that calculates the probability of each paraphrase.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2014) 2: 169–180.
Published: 01 April 2014
Abstract
View article
PDF
In this paper, we study the problem of manually correcting automatic annotations of natural language in as efficient a manner as possible. We introduce a method for automatically segmenting a corpus into chunks such that many uncertain labels are grouped into the same chunk, while human supervision can be omitted altogether for other segments. A tradeoff must be found for segment sizes. Choosing short segments allows us to reduce the number of highly confident labels that are supervised by the annotator, which is useful because these labels are often already correct and supervising correct labels is a waste of effort. In contrast, long segments reduce the cognitive effort due to context switches. Our method helps find the segmentation that optimizes supervision efficiency by defining user models to predict the cost and utility of supervising each segment and solving a constrained optimization problem balancing these contradictory objectives. A user study demonstrates noticeable gains over pre-segmented, confidence-ordered baselines on two natural language processing tasks: speech transcription and word segmentation.