Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Silvana Hartmann
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 197–213.
Published: 01 May 2016
Abstract
View article
PDF
We present a new approach for generating role-labeled training data using Linked Lexical Resources, i.e., integrated lexical resources that combine several resources (e.g., Word-Net, FrameNet, Wiktionary) by linking them on the sense or on the role level. Unlike resource-based supervision in relation extraction, we focus on complex linguistic annotations, more specifically FrameNet senses and roles. The automatically labeled training data ( www.ukp.tu-darmstadt.de/knowledge-based-srl/ ) are evaluated on four corpora from different domains for the tasks of word sense disambiguation and semantic role classification. Results show that classifiers trained on our generated data equal those resulting from a standard supervised setting.