Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Tatsunori
B. Hashimoto
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2018) 6: 437–450.
Published: 01 July 2018
Abstract
View article
PDF
We propose a new generative language model for sentences that first samples a prototype sentence from the training corpus and then edits it into a new sentence. Compared to traditional language models that generate from scratch either left-to-right or by first sampling a latent sentence vector, our prototype-then-edit model improves perplexity on language modeling and generates higher quality outputs according to human evaluation. Furthermore, the model gives rise to a latent edit vector that captures interpretable semantics such as sentence similarity and sentence-level analogies.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 273–286.
Published: 01 July 2016
Abstract
View article
PDF
Continuous word representations have been remarkably useful across NLP tasks but remain poorly understood. We ground word embeddings in semantic spaces studied in the cognitive-psychometric literature, taking these spaces as the primary objects to recover. To this end, we relate log co-occurrences of words in large corpora to semantic similarity assessments and show that co-occurrences are indeed consistent with an Euclidean semantic space hypothesis. Framing word embedding as metric recovery of a semantic space unifies existing word embedding algorithms, ties them to manifold learning, and demonstrates that existing algorithms are consistent metric recovery methods given co-occurrence counts from random walks. Furthermore, we propose a simple, principled, direct metric recovery algorithm that performs on par with the state-of-the-art word embedding and manifold learning methods. Finally, we complement recent focus on analogies by constructing two new inductive reasoning datasets—series completion and classification—and demonstrate that word embeddings can be used to solve them as well.