Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Xiyan Fu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2024) 12: 912–932.
Published: 01 August 2024
FIGURES
| View All (5)
Abstract
View article
PDF
Compositional Natural Language Inference (NLI) has been explored to assess the true abilities of neural models to perform NLI. Yet, current evaluations assume models to have full access to all primitive inferences in advance, in contrast to humans that continuously acquire inference knowledge. In this paper, we introduce the C ontinual C ompositional Gen eralization in Inference (C 2 Gen NLI) challenge, where a model continuously acquires knowledge of constituting primitive inference tasks as a basis for compositional inferences. We explore how continual learning affects compositional generalization in NLI, by designing a continual learning setup for compositional NLI inference tasks. Our experiments demonstrate that models fail to compositionally generalize in a continual scenario. To address this problem, we first benchmark various continual learning algorithms and verify their efficacy. We then further analyze C 2 Gen, focusing on how to order primitives and compositional inference types, and examining correlations between subtasks. Our analyses show that by learning subtasks continuously while observing their dependencies and increasing degrees of difficulty, continual learning can enhance composition generalization ability. 1