Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-16 of 16
Yoav Goldberg
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2022) 10: 764–784.
Published: 27 July 2022
FIGURES
| View All (8)
Abstract
View article
PDF
Understanding the relations between entities denoted by NPs in a text is a critical part of human-like natural language understanding. However, only a fraction of such relations is covered by standard NLP tasks and benchmarks nowadays. In this work, we propose a novel task termed text-based NP enrichment (TNE), in which we aim to enrich each NP in a text with all the preposition-mediated relations—either explicit or implicit—that hold between it and other NPs in the text. The relations are represented as triplets, each denoted by two NPs related via a preposition. Humans recover such relations seamlessly, while current state-of-the-art models struggle with them due to the implicit nature of the problem. We build the first large-scale dataset for the problem, provide the formal framing and scope of annotation, analyze the data, and report the results of fine-tuned language models on the task, demonstrating the challenge it poses to current technology. A webpage with a data-exploration UI, a demo, and links to the code, models, and leaderboard, to foster further research into this challenging problem can be found at: yanaiela.github.io/TNE/ .
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 1407.
Published: 06 December 2021
Abstract
View article
PDF
During production of this paper, an error was introduced to the formula on the bottom of the right column of page 1020. In the last two terms of the formula, the n and m subscripts were swapped. The correct formula is: L c = ∑ n = 1 k ∑ m = n + 1 k D K L ( Q n r i ∥ Q m r i ) + D K L ( Q m r i ∥ Q n r i ) The paper has been updated.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 1012–1031.
Published: 06 December 2021
FIGURES
Abstract
View article
PDF
Consistency of a model—that is, the invariance of its behavior under meaning-preserving alternations in its input—is a highly desirable property in natural language processing. In this paper we study the question: Are Pretrained Language Models (PLMs) consistent with respect to factual knowledge? To this end, we create ParaRel 🤘, a high-quality resource of cloze-style query English paraphrases. It contains a total of 328 paraphrases for 38 relations. Using ParaRel 🤘, we show that the consistency of all PLMs we experiment with is poor— though with high variance between relations. Our analysis of the representational spaces of PLMs suggests that they have a poor structure and are currently not suitable for representing knowledge robustly. Finally, we propose a method for improving model consistency and experimentally demonstrate its effectiveness. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 1047–1060.
Published: 21 September 2021
FIGURES
| View All (6)
Abstract
View article
PDF
Language models trained on billions of tokens have recently led to unprecedented results on many NLP tasks. This success raises the question of whether, in principle, a system can ever “understand” raw text without access to some form of grounding. We formally investigate the abilities of ungrounded systems to acquire meaning. Our analysis focuses on the role of “assertions”: textual contexts that provide indirect clues about the underlying semantics. We study whether assertions enable a system to emulate representations preserving semantic relations like equivalence. We find that assertions enable semantic emulation of languages that satisfy a strong notion of semantic transparency. However, for classes of languages where the same expression can take different values in different contexts, we show that emulation can become uncomputable. Finally, we discuss differences between our formal model and natural language, exploring how our results generalize to a modal setting and other semantic relations. Together, our results suggest that assertions in code or language do not provide sufficient signal to fully emulate semantic representations. We formalize ways in which ungrounded language models appear to be fundamentally limited in their ability to “understand”.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 691–706.
Published: 02 August 2021
FIGURES
Abstract
View article
PDF
We explore few-shot learning (FSL) for relation classification (RC). Focusing on the realistic scenario of FSL, in which a test instance might not belong to any of the target categories (none-of-the-above, [NOTA]), we first revisit the recent popular dataset structure for FSL, pointing out its unrealistic data distribution. To remedy this, we propose a novel methodology for deriving more realistic few-shot test data from available datasets for supervised RC, and apply it to the TACRED dataset. This yields a new challenging benchmark for FSL-RC, on which state of the art models show poor performance. Next, we analyze classification schemes within the popular embedding-based nearest-neighbor approach for FSL, with respect to constraints they impose on the embedding space. Triggered by this analysis, we propose a novel classification scheme in which the NOTA category is represented as learned vectors, shown empirically to be an appealing option for FSL.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 294–310.
Published: 31 March 2021
Abstract
View article
PDF
We find that the requirement of model interpretations to be faithful is vague and incomplete. With interpretation by textual highlights as a case study, we present several failure cases. Borrowing concepts from social science, we identify that the problem is a misalignment between the causal chain of decisions (causal attribution) and the attribution of human behavior to the interpretation (social attribution). We reformulate faithfulness as an accurate attribution of causality to the model, and introduce the concept of aligned faithfulness: faithful causal chains that are aligned with their expected social behavior. The two steps of causal attribution and social attribution together complete the process of explaining behavior. With this formalization, we characterize various failures of misaligned faithful highlight interpretations, and propose an alternative causal chain to remedy the issues. Finally, we implement highlight explanations of the proposed causal format using contrastive explanations.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2021) 9: 160–175.
Published: 11 March 2021
FIGURES
| View All (6)
Abstract
View article
PDF
A growing body of work makes use of probing in order to investigate the working of neural models, often considered black boxes. Recently, an ongoing debate emerged surrounding the limitations of the probing paradigm. In this work, we point out the inability to infer behavioral conclusions from probing results, and offer an alternative method that focuses on how the information is being used, rather than on what information is encoded. Our method, Amnesic Probing , follows the intuition that the utility of a property for a given task can be assessed by measuring the influence of a causal intervention that removes it from the representation. Equipped with this new analysis tool, we can ask questions that were not possible before, for example, is part-of-speech information important for word prediction? We perform a series of analyses on BERT to answer these types of questions. Our findings demonstrate that conventional probing performance is not correlated to task importance, and we call for increased scrutiny of claims that draw behavioral or causal conclusions from probing results. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2020) 8: 743–758.
Published: 01 December 2020
FIGURES
| View All (4)
Abstract
View article
PDF
Recent success of pre-trained language models (LMs) has spurred widespread interest in the language capabilities that they possess. However, efforts to understand whether LM representations are useful for symbolic reasoning tasks have been limited and scattered. In this work, we propose eight reasoning tasks, which conceptually require operations such as comparison, conjunction, and composition. A fundamental challenge is to understand whether the performance of a LM on a task should be attributed to the pre-trained representations or to the process of fine-tuning on the task data. To address this, we propose an evaluation protocol that includes both zero-shot evaluation (no fine-tuning), as well as comparing the learning curve of a fine-tuned LM to the learning curve of multiple controls, which paints a rich picture of the LM capabilities. Our main findings are that: (a) different LMs exhibit qualitatively different reasoning abilities, e.g., RoBERTa succeeds in reasoning tasks where BERT fails completely; (b) LMs do not reason in an abstract manner and are context-dependent , e.g., while RoBERTa can compare ages, it can do so only when the ages are in the typical range of human ages; (c) On half of our reasoning tasks all models fail completely. Our findings and infrastructure can help future work on designing new datasets, models, and objective functions for pre-training.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2020) 8: 183–198.
Published: 01 April 2020
FIGURES
| View All (8)
Abstract
View article
PDF
Understanding natural language questions entails the ability to break down a question into the requisite steps for computing its answer. In this work, we introduce a Question Decomposition Meaning Representation (QDMR) for questions. QDMR constitutes the ordered list of steps, expressed through natural language, that are necessary for answering a question. We develop a crowdsourcing pipeline, showing that quality QDMRs can be annotated at scale, and release the B reak dataset, containing over 83K pairs of questions and their QDMRs. We demonstrate the utility of QDMR by showing that (a) it can be used to improve open-domain question answering on the H otpot QA dataset, (b) it can be deterministically converted to a pseudo-SQL formal language, which can alleviate annotation in semantic parsing applications. Last, we use B reak to train a sequence-to-sequence model with copying that parses questions into QDMR structures, and show that it substantially outperforms several natural baselines.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2019) 7: 519–535.
Published: 01 September 2019
FIGURES
| View All (5)
Abstract
View article
PDF
We provide the first computational treatment of fused-heads constructions (FHs), focusing on the numeric fused-heads (NFHs). FHs constructions are noun phrases in which the head noun is missing and is said to be “fused” with its dependent modifier. This missing information is implicit and is important for sentence understanding. The missing references are easily filled in by humans but pose a challenge for computational models. We formulate the handling of FHs as a two stages process: Identification of the FH construction and resolution of the missing head. We explore the NFH phenomena in large corpora of English text and create (1) a data set and a highly accurate method for NFH identification; (2) a 10k examples (1 M tokens) crowd-sourced data set of NFH resolution; and (3) a neural baseline for the NFH resolution task. We release our code and data set, to foster further research into this challenging problem.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 521–535.
Published: 01 December 2016
Abstract
View article
PDF
The success of long short-term memory (LSTM) neural networks in language processing is typically attributed to their ability to capture long-distance statistical regularities. Linguistic regularities are often sensitive to syntactic structure; can such dependencies be captured by LSTMs, which do not have explicit structural representations? We begin addressing this question using number agreement in English subject-verb dependencies. We probe the architecture’s grammatical competence both using training objectives with an explicit grammatical target (number prediction, grammaticality judgments) and using language models. In the strongly supervised settings, the LSTM achieved very high overall accuracy (less than 1% errors), but errors increased when sequential and structural information conflicted. The frequency of such errors rose sharply in the language-modeling setting. We conclude that LSTMs can capture a non-trivial amount of grammatical structure given targeted supervision, but stronger architectures may be required to further reduce errors; furthermore, the language modeling signal is insufficient for capturing syntax-sensitive dependencies, and should be supplemented with more direct supervision if such dependencies need to be captured.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 445–461.
Published: 01 August 2016
Abstract
View article
PDF
We suggest a compositional vector representation of parse trees that relies on a recursive combination of recurrent-neural network encoders. To demonstrate its effectiveness, we use the representation as the backbone of a greedy, bottom-up dependency parser, achieving very strong accuracies for English and Chinese, without relying on external word embeddings. The parser’s implementation is available for download at the first author’s webpage.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2016) 4: 313–327.
Published: 01 July 2016
Abstract
View article
PDF
We present a simple and effective scheme for dependency parsing which is based on bidirectional-LSTMs (BiLSTMs). Each sentence token is associated with a BiLSTM vector representing the token in its sentential context, and feature vectors are constructed by concatenating a few BiLSTM vectors. The BiLSTM is trained jointly with the parser objective, resulting in very effective feature extractors for parsing. We demonstrate the effectiveness of the approach by applying it to a greedy transition-based parser as well as to a globally optimized graph-based parser. The resulting parsers have very simple architectures, and match or surpass the state-of-the-art accuracies on English and Chinese.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2015) 3: 211–225.
Published: 01 May 2015
Abstract
View article
PDF
Recent trends suggest that neural-network-inspired word embedding models outperform traditional count-based distributional models on word similarity and analogy detection tasks. We reveal that much of the performance gains of word embeddings are due to certain system design choices and hyperparameter optimizations, rather than the embedding algorithms themselves. Furthermore, we show that these modifications can be transferred to traditional distributional models, yielding similar gains. In contrast to prior reports, we observe mostly local or insignificant performance differences between the methods, with no global advantage to any single approach over the others.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2014) 2: 119–130.
Published: 01 April 2014
Abstract
View article
PDF
We develop parsing oracles for two transition-based dependency parsers, including the arc-standard parser, solving a problem that was left open in (Goldberg and Nivre, 2013). We experimentally show that using these oracles during training yields superior parsing accuracies on many languages.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2013) 1: 403–414.
Published: 01 October 2013
Abstract
View article
PDF
Greedy transition-based parsers are very fast but tend to suffer from error propagation. This problem is aggravated by the fact that they are normally trained using oracles that are deterministic and incomplete in the sense that they assume a unique canonical path through the transition system and are only valid as long as the parser does not stray from this path. In this paper, we give a general characterization of oracles that are nondeterministic and complete, present a method for deriving such oracles for transition systems that satisfy a property we call arc decomposition, and instantiate this method for three well-known transition systems from the literature. We say that these oracles are dynamic, because they allow us to dynamically explore alternative and nonoptimal paths during training — in contrast to oracles that statically assume a unique optimal path. Experimental evaluation on a wide range of data sets clearly shows that using dynamic oracles to train greedy parsers gives substantial improvements in accuracy. Moreover, this improvement comes at no cost in terms of efficiency, unlike other techniques like beam search.