Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-4 of 4
Yonatan Belinkov
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2024) 12: 771–785.
Published: 04 June 2024
FIGURES
| View All (7)
Abstract
View article
PDF
Recent studies show that instruction tuning (IT) and reinforcement learning from human feedback (RLHF) improve the abilities of large language models (LMs) dramatically. While these tuning methods can help align models with human objectives and generate high-quality text, not much is known about their potential adverse effects. In this work, we investigate the effect of IT and RLHF on decision making and reasoning in LMs, focusing on three cognitive biases—the decoy effect, the certainty effect, and the belief bias—all of which are known to influence human decision-making and reasoning. Our findings highlight the presence of these biases in various models from the GPT-3, Mistral, and T5 families. Notably, we find a stronger presence of biases in models that have undergone instruction tuning, such as Flan-T5, Mistral-Instruct, GPT3.5, and GPT4. Our work constitutes a step toward comprehending cognitive biases in instruction-tuned LMs, which is crucial for the development of more reliable and unbiased language models. 1
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2019) 7: 49–72.
Published: 01 April 2019
FIGURES
Abstract
View article
PDF
The field of natural language processing has seen impressive progress in recent years, with neural network models replacing many of the traditional systems. A plethora of new models have been proposed, many of which are thought to be opaque compared to their feature-rich counterparts. This has led researchers to analyze, interpret, and evaluate neural networks in novel and more fine-grained ways. In this survey paper, we review analysis methods in neural language processing, categorize them according to prominent research trends, highlight existing limitations, and point to potential directions for future work.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2015) 3: 101.
Published: 01 February 2015
Abstract
View article
PDF
Correction for the list of authors in the reference (Seddah et al., 2013).
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2014) 2: 561–572.
Published: 01 December 2014
Abstract
View article
PDF
Prepositional phrase (PP) attachment disambiguation is a known challenge in syntactic parsing. The lexical sparsity associated with PP attachments motivates research in word representations that can capture pertinent syntactic and semantic features of the word. One promising solution is to use word vectors induced from large amounts of raw text. However, state-of-the-art systems that employ such representations yield modest gains in PP attachment accuracy. In this paper, we show that word vector representations can yield significant PP attachment performance gains. This is achieved via a non-linear architecture that is discriminatively trained to maximize PP attachment accuracy. The architecture is initialized with word vectors trained from unlabeled data, and relearns those to maximize attachment accuracy. We obtain additional performance gains with alternative representations such as dependency-based word vectors. When tested on both English and Arabic datasets, our method outperforms both a strong SVM classifier and state-of-the-art parsers. For instance, we achieve 82.6% PP attachment accuracy on Arabic, while the Turbo and Charniak self-trained parsers obtain 76.7% and 80.8% respectively.