Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Yuxia Wang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2023) 11: 997–1013.
Published: 15 August 2023
FIGURES
| View All (7)
Abstract
View article
PDF
Despite the subjective nature of semantic textual similarity (STS) and pervasive disagreements in STS annotation, existing benchmarks have used averaged human ratings as gold standard. Averaging masks the true distribution of human opinions on examples of low agreement, and prevents models from capturing the semantic vagueness that the individual ratings represent. In this work, we introduce USTS, the first U ncertainty-aware STS dataset with ∼15,000 Chinese sentence pairs and 150,000 labels, to study collective human opinions in STS. Analysis reveals that neither a scalar nor a single Gaussian fits a set of observed judgments adequately. We further show that current STS models cannot capture the variance caused by human disagreement on individual instances, but rather reflect the predictive confidence over the aggregate dataset.
Journal Articles
Publisher: Journals Gateway
Transactions of the Association for Computational Linguistics (2022) 10: 680–696.
Published: 15 June 2022
FIGURES
Abstract
View article
PDF
State-of-the-art classification and regression models are often not well calibrated, and cannot reliably provide uncertainty estimates, limiting their utility in safety-critical applications such as clinical decision-making. While recent work has focused on calibration of classifiers, there is almost no work in NLP on calibration in a regression setting. In this paper, we quantify the calibration of pre- trained language models for text regression, both intrinsically and extrinsically. We further apply uncertainty estimates to augment training data in low-resource domains. Our experiments on three regression tasks in both self-training and active-learning settings show that uncertainty estimation can be used to increase overall performance and enhance model generalization.