Skip to Main Content
Table 2. 
Parameters
Parameter nameDifferential equations that were simulated via Euler method with a time step of 0.1 msState variablesCnp – structural network weightTnp – structural network delaysσnSD of Gaussian white noiseωn – oscillator frequencyc1 – first eigenvalue of weight matrixτ0 – relaxation constant
Firing Rate τ0drndt = −rn(t) + kc1p=1NCnprp(tτnp) + σn(tr(t) – mean firing rate K = 0.9 (scale of Cnp) 11 ms set for mean 2 rad/s N/A calculated 20 ms 
Kuramoto dθndt = ωn + kp=1Ncnp sin(θp(tτnp) − θn(t)) + σn(tθ(t) – oscillator phase K = 13 (scale of Cnp) 11 ms set for mean 2 rad/s Randomly initialized as N ∼ (60 Hz, 2 Hz) N/A N/A 
Parameter nameDifferential equations that were simulated via Euler method with a time step of 0.1 msState variablesCnp – structural network weightTnp – structural network delaysσnSD of Gaussian white noiseωn – oscillator frequencyc1 – first eigenvalue of weight matrixτ0 – relaxation constant
Firing Rate τ0drndt = −rn(t) + kc1p=1NCnprp(tτnp) + σn(tr(t) – mean firing rate K = 0.9 (scale of Cnp) 11 ms set for mean 2 rad/s N/A calculated 20 ms 
Kuramoto dθndt = ωn + kp=1Ncnp sin(θp(tτnp) − θn(t)) + σn(tθ(t) – oscillator phase K = 13 (scale of Cnp) 11 ms set for mean 2 rad/s Randomly initialized as N ∼ (60 Hz, 2 Hz) N/A N/A 
Close Modal

or Create an Account

Close Modal
Close Modal