Skip to Main Content
Table 1:
Summary of MNK-landscape benchmark parameters and problem instance features investigated in the article.
 Benchmark parameters (3)  
 Correlation between the objective function values  
 Number of objective functions  
 Number of variable interactions (epistatis)  
 Problem features (12)  
 Number of Pareto optimal solutions (Knowles and Corne, 2003) 
 Hypervolume (Zitzler et al., 2003) of the Pareto set (Aguirre and Tanaka, 2007) 
 Average distance between Pareto optimal solutions (Liefooghe, Verel, Aguirre, and Tanaka, 2013) 
 Maximum distance between Pareto optimal solutions (Knowles and Corne, 2003) 
 Proportion of supported solutions in the Pareto set (Knowles and Corne, 2003) 
 Number of Pareto local optima (Paquete et al., 2007) 
 Length of a Pareto-based adaptive walk (Verel et al., 2013) 
 Relative number of connected components (Paquete and Stützle, 2009) 
 Proportional size of the largest connected component (Verel et al., 2011) 
 Minimal distance to connect the Pareto graph (Paquete and Stützle, 2009) 
 First autocorrelation coefficient of solution hypervolume (Liefooghe, Verel, Aguirre, and Tanaka, 2013) 
 First autocorrelation coefficient of local hypervolume (Liefooghe, Verel, Aguirre, and Tanaka, 2013) 
 Benchmark parameters (3)  
 Correlation between the objective function values  
 Number of objective functions  
 Number of variable interactions (epistatis)  
 Problem features (12)  
 Number of Pareto optimal solutions (Knowles and Corne, 2003) 
 Hypervolume (Zitzler et al., 2003) of the Pareto set (Aguirre and Tanaka, 2007) 
 Average distance between Pareto optimal solutions (Liefooghe, Verel, Aguirre, and Tanaka, 2013) 
 Maximum distance between Pareto optimal solutions (Knowles and Corne, 2003) 
 Proportion of supported solutions in the Pareto set (Knowles and Corne, 2003) 
 Number of Pareto local optima (Paquete et al., 2007) 
 Length of a Pareto-based adaptive walk (Verel et al., 2013) 
 Relative number of connected components (Paquete and Stützle, 2009) 
 Proportional size of the largest connected component (Verel et al., 2011) 
 Minimal distance to connect the Pareto graph (Paquete and Stützle, 2009) 
 First autocorrelation coefficient of solution hypervolume (Liefooghe, Verel, Aguirre, and Tanaka, 2013) 
 First autocorrelation coefficient of local hypervolume (Liefooghe, Verel, Aguirre, and Tanaka, 2013) 
Close Modal

or Create an Account

Close Modal
Close Modal