Skip to Main Content
Table 2. 

Differential equations specifying how chemical concentrations change within each simulated bacterium (excluding influence of the environment). kfn and kbn represent the reaction rate constants for the nth reaction in the forward or backward direction. ϵ(ρ, x) in the final term of some of the equations represents the local concentration of the reactant ρ outside the bacterium, which is a function of its location x.

dE/dt = −kf0EMC+kb0C2V2/4+kdϵ(E, x
dM/dt = −kf0EMC+kb0C2V2/4+kdϵ(M, x
dC/dt = −kf0EMC+kb0C2V2/4 
   −2kb0C2V2/4+2kf0EMC 
   −kf1CH+kb1HW 
   −kf3CV2/2 
   −kf4CW2/2 
   −kf7CFNS+kb7C2V2S2/6 
   −2kb7C2V2S2/6+2kf7CFNS 
dV/dt = −2kb0C2V2/4+2kf0EMC 
   −2kf2CHV2/2+2kb2CH2W2/4 
   −2kf3CV2/2 
   −2kb7C2V2S2/6+2kf7CFNS 
dW/dt = −kb1HW+kf1CH 
    −2kb2CH2W2/4+2kf2CHV2/2 
    −2kf4CW2/2 
dH/dt = −kf2CHV2/2+kb2CH2W2/4 
   −2kb2CH2W2/4+2kf2CHV2/2 
   −kf5H 
dF/dt = −kf7CFNS+kb7C2V2S2/6+kdϵ(F, x
dN/dt = −kf7CFNS+kb7C2V2S2/6+kdϵ(N, x
dS/dt = −kf6S 
   −kf7CFNS+kb7C2V2S2/6 
   −2kb7C2V2S2/6+2kf7CFNS+kdϵ(S, x
dE/dt = −kf0EMC+kb0C2V2/4+kdϵ(E, x
dM/dt = −kf0EMC+kb0C2V2/4+kdϵ(M, x
dC/dt = −kf0EMC+kb0C2V2/4 
   −2kb0C2V2/4+2kf0EMC 
   −kf1CH+kb1HW 
   −kf3CV2/2 
   −kf4CW2/2 
   −kf7CFNS+kb7C2V2S2/6 
   −2kb7C2V2S2/6+2kf7CFNS 
dV/dt = −2kb0C2V2/4+2kf0EMC 
   −2kf2CHV2/2+2kb2CH2W2/4 
   −2kf3CV2/2 
   −2kb7C2V2S2/6+2kf7CFNS 
dW/dt = −kb1HW+kf1CH 
    −2kb2CH2W2/4+2kf2CHV2/2 
    −2kf4CW2/2 
dH/dt = −kf2CHV2/2+kb2CH2W2/4 
   −2kb2CH2W2/4+2kf2CHV2/2 
   −kf5H 
dF/dt = −kf7CFNS+kb7C2V2S2/6+kdϵ(F, x
dN/dt = −kf7CFNS+kb7C2V2S2/6+kdϵ(N, x
dS/dt = −kf6S 
   −kf7CFNS+kb7C2V2S2/6 
   −2kb7C2V2S2/6+2kf7CFNS+kdϵ(S, x
Close Modal

or Create an Account

Close Modal
Close Modal