Skip to Main Content
Table 4 
Performance, in terms of precision (P), recall (R), and F1, of the CRF model on the development set for both event mention detection and event detection + classification tasks with different settings of features.
 MENTION DETECTION ONLYDETECTION + CLASSIFICATION
PRF1PRF1
ALL FEATURES 86.60% 80.56% 83.33% 30.05% 25.24% 28.45% 
- without lemma 87.92% 79.48% 83.19% 33.43% 19.19% 22.19% 
- without PoS 85.01% 74.32% 78.83% 38.83% 22.98% 27.26% 
- without genre 86.74% 80.60% 83.41% 41.00% 25.46% 29.13% 
BASELINE (only tokens) 82.72% 71.53% 76.15% 36.29% 20.15% 24.56% 
 MENTION DETECTION ONLYDETECTION + CLASSIFICATION
PRF1PRF1
ALL FEATURES 86.60% 80.56% 83.33% 30.05% 25.24% 28.45% 
- without lemma 87.92% 79.48% 83.19% 33.43% 19.19% 22.19% 
- without PoS 85.01% 74.32% 78.83% 38.83% 22.98% 27.26% 
- without genre 86.74% 80.60% 83.41% 41.00% 25.46% 29.13% 
BASELINE (only tokens) 82.72% 71.53% 76.15% 36.29% 20.15% 24.56% 
Close Modal

or Create an Account

Close Modal
Close Modal