Some example failure cases of our approach for solving SAT style geometry problems. In (i) the axiom set contains an axiom that the internal angle of a regular hexagon is 120° and that each side of a regular polygon is equal. But there is no way to deduce that the angle CBO is half of the internal angle ABC (by symmetry). On the other hand, the coordinate geometry solver can exploit these three facts as maximizing the satisfiability of the various constraints to answer the question. (ii) The solver does not contain any knowledge about construction. The question cannot be correctly interpreted and the coordinate geometry solver also gets it wrong. (iii) The solver does not contain any knowledge about construction or prisms. The question cannot be correctly interpreted and the coordinate geometry solver also gets it wrong. (iv) The question as well as the answer candidates cannot be correctly interpreted (as the concept of perpendicular to plane is not in the vocabulary). Both solvers get it wrong. (v) The parser cannot interpret that angle AC is indeed angle AEC. This needs to be understood by context as it defies the standard type definition of an angle. Both solvers get it wrong. (vi) Both diagram and text parsers fail here. Both solvers answer incorrectly.