. | . | |||||
---|---|---|---|---|---|---|
. | 1.0 . | 0.5 . | 0.25 . | 0.15 . | 0.1 . | 0.01 . |
1-step prediction | 0.0101 | 0.00726 | 0.00418 | 0.00376 | 0.00341 | 0.00834 |
2-steps prediction | 0.0171 | 0.0127 | 0.00907 | 0.00918 | 0.0116 | 0.0229 |
3-steps prediction | 0.0222 | 0.0183 | 0.0140 | 0.0152 | 0.0205 | 0.0378 |
4-steps prediction | 0.0279 | 0.0233 | 0.0189 | 0.0212 | 0.0301 | 0.0497 |
5-steps prediction | 0.0325 | 0.0274 | 0.0234 | 0.0270 | 0.0375 | 0.0578 |
. | . | |||||
---|---|---|---|---|---|---|
. | 1.0 . | 0.5 . | 0.25 . | 0.15 . | 0.1 . | 0.01 . |
1-step prediction | 0.0101 | 0.00726 | 0.00418 | 0.00376 | 0.00341 | 0.00834 |
2-steps prediction | 0.0171 | 0.0127 | 0.00907 | 0.00918 | 0.0116 | 0.0229 |
3-steps prediction | 0.0222 | 0.0183 | 0.0140 | 0.0152 | 0.0205 | 0.0378 |
4-steps prediction | 0.0279 | 0.0233 | 0.0189 | 0.0212 | 0.0301 | 0.0497 |
5-steps prediction | 0.0325 | 0.0274 | 0.0234 | 0.0270 | 0.0375 | 0.0578 |
Notes: The best predictions are produced by the model trained with an intermediate value of the meta-prior (). The table shows the MSE between the unseen test targets and the one-step- to five-steps-ahead generated predictions. The networks with minimum MSE are shown in bold numbers.