Table 2. 
This table tests the statistical significance of the differences in the fitness curves in Figure 6.
Layers to comparep-valuep-value < 0.05
Layer 1 versus Layer 2 5.03E−06 Yes 
Layer 1 versus Layer 3 4.10E−05 Yes 
Layer 1 versus Layer 4 2.81E−10 Yes 
Layer 2 versus Layer 3 2.79E−01 No 
Layer 2 versus Layer 4 3.44E−06 Yes 
Layer 3 versus Layer 4 2.33E−07 Yes 
Layers to comparep-valuep-value < 0.05
Layer 1 versus Layer 2 5.03E−06 Yes 
Layer 1 versus Layer 3 4.10E−05 Yes 
Layer 1 versus Layer 4 2.81E−10 Yes 
Layer 2 versus Layer 3 2.79E−01 No 
Layer 2 versus Layer 4 3.44E−06 Yes 
Layer 3 versus Layer 4 2.33E−07 Yes 

Notes. Each layer (each curve) is summarized by the average fitness over a run, yielding a sample of twelve values, one value for each of the twelve runs of a layer. We then compare the fitness curves for all possible pairs of layers, using a two-tailed Welch t-test for samples with unequal variance (heteroscedastic variance). All the pairs of curves in Figure 6 are significantly different, except for Layers 2 and 3 (the variable asexual layer and the sexual layer).

Close Modal

or Create an Account

Close Modal
Close Modal