Layers to compare . | p-value . | p-value < 0.05 . |
---|---|---|
Layer 1 versus Layer 2 | 5.03E−06 | Yes |
Layer 1 versus Layer 3 | 4.10E−05 | Yes |
Layer 1 versus Layer 4 | 2.81E−10 | Yes |
Layer 2 versus Layer 3 | 2.79E−01 | No |
Layer 2 versus Layer 4 | 3.44E−06 | Yes |
Layer 3 versus Layer 4 | 2.33E−07 | Yes |
Layers to compare . | p-value . | p-value < 0.05 . |
---|---|---|
Layer 1 versus Layer 2 | 5.03E−06 | Yes |
Layer 1 versus Layer 3 | 4.10E−05 | Yes |
Layer 1 versus Layer 4 | 2.81E−10 | Yes |
Layer 2 versus Layer 3 | 2.79E−01 | No |
Layer 2 versus Layer 4 | 3.44E−06 | Yes |
Layer 3 versus Layer 4 | 2.33E−07 | Yes |
Notes. Each layer (each curve) is summarized by the average fitness over a run, yielding a sample of twelve values, one value for each of the twelve runs of a layer. We then compare the fitness curves for all possible pairs of layers, using a two-tailed Welch t-test for samples with unequal variance (heteroscedastic variance). All the pairs of curves in Figure 6 are significantly different, except for Layers 2 and 3 (the variable asexual layer and the sexual layer).