Skip to Main Content
Table 2: 
Precision@1 for BLI on the VecMap dataset. The results of MSF-ISF, SL-unsup, CCA-NN (Faruqui and Dyer, 2014), and Adv-Refine are reported by Artetxe et al. (2018b). CCA-NN employs nearest neighbor retrieval procedure. The results of GPA are reported by Kementchedjhieva et al. (2018).
Methoden-iten-deen-fien-esavg.
Supervised      
GeoMM 48.3 49.3 36.1 39.3 43.3 
GeoMMmulti 48.7 49.1 36.0 39.0 43.2 
Procrustes 44.9 46.5 33.5 35.1 40.0 
MSF-ISF 45.3 44.1 32.9 36.6 39.7 
MSF 47.7 47.5 35.4 38.7 42.3 
MSFμ 48.4 47.7 34.7 38.9 42.4 
GPA 45.3 48.5 31.4 − − 
CCA-NN 38.4 37.1 27.6 26.8 32.5 
Unsupervised      
SL-unsup 48.1 48.2 32.6 37.3 41.6 
Adv-Refine 45.2 46.8 0.4 35.4 31.9 
Methoden-iten-deen-fien-esavg.
Supervised      
GeoMM 48.3 49.3 36.1 39.3 43.3 
GeoMMmulti 48.7 49.1 36.0 39.0 43.2 
Procrustes 44.9 46.5 33.5 35.1 40.0 
MSF-ISF 45.3 44.1 32.9 36.6 39.7 
MSF 47.7 47.5 35.4 38.7 42.3 
MSFμ 48.4 47.7 34.7 38.9 42.4 
GPA 45.3 48.5 31.4 − − 
CCA-NN 38.4 37.1 27.6 26.8 32.5 
Unsupervised      
SL-unsup 48.1 48.2 32.6 37.3 41.6 
Adv-Refine 45.2 46.8 0.4 35.4 31.9 
Close Modal

or Create an Account

Close Modal
Close Modal