Skip to Main Content
Table 3: 
Performance comparison of previous and our best models in the Yelp 2013 dataset. Our best models perform better, even though we only use a single BiLSTM encoder. Boldface correspond to the best values for each block. Underlined values correspond to the best values across the board.
ModelsAccRMSE
UPNN (Tang et al., 2015) CNN + word-cust + bias-cust 59.6 0.784 
UPDMN (Dou, 2017) LSTM + memory-cust 63.9 0.662 
NSC (Chen et al., 2016) LSTM + attention-cust 65.0 0.692 
HCSC (Amplayo et al., 2018a) BiLSTM + CNN + attention-cust (CSAA) 65.7 0.660 
PMA (Zhu and Yang, 2017) HierLSTM + attention-cust (PMA) 65.8 0.668 
DUPMN (Long et al., 2018) HierLSTM + memory-cust 66.2 0.667 
CMA (Ma et al., 2017) HierAttention + attention-cust (CMA) 66.4 0.677 
Our best models BiLSTM + encoder-basis-cust 66.1 0.665 
BiLSTM + bias-basis-cust 66.9 0.654 
BiLSTM + linear-basis-cust 67.1 0.662 
ModelsAccRMSE
UPNN (Tang et al., 2015) CNN + word-cust + bias-cust 59.6 0.784 
UPDMN (Dou, 2017) LSTM + memory-cust 63.9 0.662 
NSC (Chen et al., 2016) LSTM + attention-cust 65.0 0.692 
HCSC (Amplayo et al., 2018a) BiLSTM + CNN + attention-cust (CSAA) 65.7 0.660 
PMA (Zhu and Yang, 2017) HierLSTM + attention-cust (PMA) 65.8 0.668 
DUPMN (Long et al., 2018) HierLSTM + memory-cust 66.2 0.667 
CMA (Ma et al., 2017) HierAttention + attention-cust (CMA) 66.4 0.677 
Our best models BiLSTM + encoder-basis-cust 66.1 0.665 
BiLSTM + bias-basis-cust 66.9 0.654 
BiLSTM + linear-basis-cust 67.1 0.662 
Close Modal

or Create an Account

Close Modal
Close Modal