Skip to Main Content
Table 2: 
Cv coherence scores for latent topics produced by different models. The best result in each column is highlighted in bold. Our joint model Topic+Disc achieves significantly better coherence scores than all the baselines (p < 0.01, paired test).
ModelsK = 50K = 100
TRECTWT16TRECTWT16
Baselines     
LDA 0.467 0.454 0.467 0.454 
BTM 0.460 0.461 0.466 0.463 
LF-DMM 0.456 0.448 0.463 0.466 
LF-LDA 0.470 0.456 0.467 0.453 
NTM 0.478 0.479 0.482 0.443 
Li et al. (2018) 0.463 0.433 0.464 0.435 
Our models     
Topic only 0.478 0.482 0.481 0.471 
Topic+Disc 0.485 0.487 0.496 0.480 
ModelsK = 50K = 100
TRECTWT16TRECTWT16
Baselines     
LDA 0.467 0.454 0.467 0.454 
BTM 0.460 0.461 0.466 0.463 
LF-DMM 0.456 0.448 0.463 0.466 
LF-LDA 0.470 0.456 0.467 0.453 
NTM 0.478 0.479 0.482 0.443 
Li et al. (2018) 0.463 0.433 0.464 0.435 
Our models     
Topic only 0.478 0.482 0.481 0.471 
Topic+Disc 0.485 0.487 0.496 0.480 
Close Modal

or Create an Account

Close Modal
Close Modal