Table 7

Evaluation results of the proposed systems and other state-of-the-art systems.

SystemDevTest
Without pretrained language models 
GrammarSQL (Lin et al. 2019) 34.8% 33.8% 
EditSQL (Zhang et al. 2019) 36.4% 32.9% 
IRNet (Guo et al. 2019) 53.3% 46.7% 
RATSQL v2 (Wang et al. 2020) 62.7% 57.2% 
 
RYANSQL (Ours) 43.4% − 
With pretrained language models 
RCSQL (Lee 2019) 28.5% 24.3% 
EditSQL + BERT 57.6% 53.4% 
IRNet + BERT 61.9% 54.7% 
IRNet v2 + BERT 63.9% 55.0% 
SLSQL + BERT (Lei et al. 2020) 60.8% 55.7% 
 
RYANSQL + BERT (Ours) 66.6% 58.2% 
RYANSQL v2 + BERT (Ours) 70.6% 60.6% 
 
With DB content 
Global-GNN (Bogin, Gardner, and Berant 2019) 52.7% 47.4% 
IRNet++ + XLNet 65.5% 60.1% 
RATSQL v3 + BERT 69.7% 65.6
SystemDevTest
Without pretrained language models 
GrammarSQL (Lin et al. 2019) 34.8% 33.8% 
EditSQL (Zhang et al. 2019) 36.4% 32.9% 
IRNet (Guo et al. 2019) 53.3% 46.7% 
RATSQL v2 (Wang et al. 2020) 62.7% 57.2% 
 
RYANSQL (Ours) 43.4% − 
With pretrained language models 
RCSQL (Lee 2019) 28.5% 24.3% 
EditSQL + BERT 57.6% 53.4% 
IRNet + BERT 61.9% 54.7% 
IRNet v2 + BERT 63.9% 55.0% 
SLSQL + BERT (Lei et al. 2020) 60.8% 55.7% 
 
RYANSQL + BERT (Ours) 66.6% 58.2% 
RYANSQL v2 + BERT (Ours) 70.6% 60.6% 
 
With DB content 
Global-GNN (Bogin, Gardner, and Berant 2019) 52.7% 47.4% 
IRNet++ + XLNet 65.5% 60.1% 
RATSQL v3 + BERT 69.7% 65.6
Close Modal

or Create an Account

Close Modal
Close Modal