CiC-Zero Shot Generalization. Zero-shot generalization to unseen objects on the Chairs-in-Context (CiC) dataset. Results suggest NES can learn words as event classifiers in a general, object-agnostic manner. *SG model from (Achlioptas et al., 2019).
Model . | Zero-Shot Classes . | All . | |||
---|---|---|---|---|---|
Lamp . | Bed . | Table . | Sofa . | ||
Major. | 0.333 | 0.333 | 0.333 | 0.333 | 0.333 |
*SG | 0.501 | 0.564 | 0.637 | 0.536 | 0.560 |
PoE | 0.422 | 0.466 | 0.587 | 0.483 | 0.490 |
NMN | 0.462 | 0.492 | 0.572 | 0.532 | 0.515 |
MAC | 0.533 | 0.531 | 0.632 | 0.551 | 0.567 |
NES | |||||
w/VGG16 | 0.544 | 0.578 | 0.693 | 0.588 | 0.601 |
w/Res101 | 0.573 | 0.589 | 0.715 | 0.610 | 0.622 |
Model . | Zero-Shot Classes . | All . | |||
---|---|---|---|---|---|
Lamp . | Bed . | Table . | Sofa . | ||
Major. | 0.333 | 0.333 | 0.333 | 0.333 | 0.333 |
*SG | 0.501 | 0.564 | 0.637 | 0.536 | 0.560 |
PoE | 0.422 | 0.466 | 0.587 | 0.483 | 0.490 |
NMN | 0.462 | 0.492 | 0.572 | 0.532 | 0.515 |
MAC | 0.533 | 0.531 | 0.632 | 0.551 | 0.567 |
NES | |||||
w/VGG16 | 0.544 | 0.578 | 0.693 | 0.588 | 0.601 |
w/Res101 | 0.573 | 0.589 | 0.715 | 0.610 | 0.622 |