Skip to Main Content
Table 1: 

Our semi-supervised approach improves performance over the baselines (10-fold cross-validation averaged over five randomly seeded runs). “Self-Training” and “Lexical Decoding” refer to experiments where we use these methods independently. “Both” refers to their combination. We highlight the best model for each language.

Model% Character Error Rate% Word Error Rate
aingrkybhkwkaingrkybhkwk
First-Pass 1.34 3.27 8.90 7.90 6.27 15.63 31.64 38.22 
Base 0.80 1.70 8.44 4.97 5.19 7.51 21.33 27.65 
 
Semi-Supervised 
 Self-Training 0.82 1.45 7.20 4.00 5.31 6.47 18.09 23.98 
 Lexical Decoding 0.81 1.51 7.56 4.28 5.18 6.60 19.13 25.09 
 Both 0.63 1.37 5.98 3.82 4.43 6.36 16.65 22.61 
 
Error Reduction BaseBothBase 21% 19% 29% 23% 15% 15% 22% 18% 
Model% Character Error Rate% Word Error Rate
aingrkybhkwkaingrkybhkwk
First-Pass 1.34 3.27 8.90 7.90 6.27 15.63 31.64 38.22 
Base 0.80 1.70 8.44 4.97 5.19 7.51 21.33 27.65 
 
Semi-Supervised 
 Self-Training 0.82 1.45 7.20 4.00 5.31 6.47 18.09 23.98 
 Lexical Decoding 0.81 1.51 7.56 4.28 5.18 6.60 19.13 25.09 
 Both 0.63 1.37 5.98 3.82 4.43 6.36 16.65 22.61 
 
Error Reduction BaseBothBase 21% 19% 29% 23% 15% 15% 22% 18% 
Close Modal

or Create an Account

Close Modal
Close Modal