Multiple linear regression results for healthy bilinguals.
Dependent variable . | Independent variable . | B . | SE . | t . | Pr (> |t|) . | p-adj . |
---|---|---|---|---|---|---|
SS cluster size | (Intercept) | 1.995 | 0.139 | 14.334 | <0.001*** | <0.001*** |
L2 Component 1 (Background/Environment) | 0.250 | 0.156 | 1.599 | 0.125 | 0.125 | |
SS switches | (Intercept) | −18.343 | 6.170 | −2.973 | 0.008** | 0.0163* |
PAPT | 27.133 | 6.497 | 4.176 | <0.001*** | 0.002** | |
L1 Component 1 (Background/Exposure) | 0.838 | 0.438 | 1.911 | 0.072 | 0.087 | |
L2 Component 1 (Background/Environment) | −0.790 | 0.436 | −1.811 | 0.087 | 0.087 | |
FS cluster size | (Intercept) | −2.929 | 3.238 | −0.905 | 0.377 | 0.377 |
PAPT | 9.486 | 5.111 | 1.856 | 0.079 | 0.163 | |
L1 BAT | −4.478 | 2.660 | −1.683 | 0.109 | 0.163 | |
FS switches | (Intercept) | −1.804 | 3.730 | −0.484 | 0.634 | 0.634 |
L1 BAT | 9.176 | 3.995 | 2.297 | 0.033* | 0.065 |
Dependent variable . | Independent variable . | B . | SE . | t . | Pr (> |t|) . | p-adj . |
---|---|---|---|---|---|---|
SS cluster size | (Intercept) | 1.995 | 0.139 | 14.334 | <0.001*** | <0.001*** |
L2 Component 1 (Background/Environment) | 0.250 | 0.156 | 1.599 | 0.125 | 0.125 | |
SS switches | (Intercept) | −18.343 | 6.170 | −2.973 | 0.008** | 0.0163* |
PAPT | 27.133 | 6.497 | 4.176 | <0.001*** | 0.002** | |
L1 Component 1 (Background/Exposure) | 0.838 | 0.438 | 1.911 | 0.072 | 0.087 | |
L2 Component 1 (Background/Environment) | −0.790 | 0.436 | −1.811 | 0.087 | 0.087 | |
FS cluster size | (Intercept) | −2.929 | 3.238 | −0.905 | 0.377 | 0.377 |
PAPT | 9.486 | 5.111 | 1.856 | 0.079 | 0.163 | |
L1 BAT | −4.478 | 2.660 | −1.683 | 0.109 | 0.163 | |
FS switches | (Intercept) | −1.804 | 3.730 | −0.484 | 0.634 | 0.634 |
L1 BAT | 9.176 | 3.995 | 2.297 | 0.033* | 0.065 |
Note. All significant results are marked in bold. SS = Self-Switch; FS = Forced-Switch; L1 BAT = Bilingual Aphasia Test, L1; L2 BAT = Bilingual Aphasia Test, L2; PAPT = Pyramids and Palm Trees (Howard & Patterson, 1992). *p < 0.05; **p < 0.01; ***p < 0.001. Adjusted p values were calculated via the Benjamini Hochberg procedure using the Multcomp package in R (https://cran.r-project.org/web/packages/multcomp/index.html).