Table 2

Summary of characteristics of N-best algorithms. For the time complexities, the alphabet is taken to be constant and the input is represented as a wta. The two right-most columns indicate whether the algorithms compute best contexts as a preprocessing step, and what optimization methods are used to find new candidate objects.

AlgorithmObjectsTime complexityBest contextsSearch-space expansion
Eppstein (1998) Paths O(nlogn+Nn+m) No Adding sidetracks to implicit heap representations of paths 
Mohri and Riley (2002) Strings No formal analysis provided Yes On-the-fly determinization 
Huang and Chiang (2005) Runs O(mlogn+smaxNlogN)5 No Increment 
Best Trees v.1 Trees O(N2n(n2+mlogN)) Yes Eppstein’s algorithm 
Best Trees Trees O(Nm(logm+logN)) Yes Increment 
Runs O(N(logm+logN))6 Yes Increment 
AlgorithmObjectsTime complexityBest contextsSearch-space expansion
Eppstein (1998) Paths O(nlogn+Nn+m) No Adding sidetracks to implicit heap representations of paths 
Mohri and Riley (2002) Strings No formal analysis provided Yes On-the-fly determinization 
Huang and Chiang (2005) Runs O(mlogn+smaxNlogN)5 No Increment 
Best Trees v.1 Trees O(N2n(n2+mlogN)) Yes Eppstein’s algorithm 
Best Trees Trees O(Nm(logm+logN)) Yes Increment 
Runs O(N(logm+logN))6 Yes Increment 
Close Modal

or Create an Account

Close Modal
Close Modal