Table 3: 

ARC challenge scores compared with other Fully or Partially explainable approaches trained only on the ARC dataset.

ModelExplainableAccuracy
BERTLarge No 35.11 
IR Solver (Clark et al., 2016) Yes 20.26 
TupleILP (Khot et al., 2017) Yes 23.83 
TableILP (Khashabi et al., 2016) Yes 26.97 
ExplanationLP (Thayaparan et al., 2021) Yes 40.21 
DGEM (Clark et al., 2016) Partial 27.11 
KG2 (Zhang et al., 2018) Partial 31.70 
ET-RR (Ni et al., 2019) Partial 36.61 
Unsupervised AHE (Yadav et al., 2019a) Partial 33.87 
Supervised AHE (Yadav et al., 2019a) Partial 34.47 
AutoRocc (Yadav et al., 2019b) Partial 41.24 
 
Diff-Explainer (ExplanationLP) Yes 42.95 
ModelExplainableAccuracy
BERTLarge No 35.11 
IR Solver (Clark et al., 2016) Yes 20.26 
TupleILP (Khot et al., 2017) Yes 23.83 
TableILP (Khashabi et al., 2016) Yes 26.97 
ExplanationLP (Thayaparan et al., 2021) Yes 40.21 
DGEM (Clark et al., 2016) Partial 27.11 
KG2 (Zhang et al., 2018) Partial 31.70 
ET-RR (Ni et al., 2019) Partial 36.61 
Unsupervised AHE (Yadav et al., 2019a) Partial 33.87 
Supervised AHE (Yadav et al., 2019a) Partial 34.47 
AutoRocc (Yadav et al., 2019b) Partial 41.24 
 
Diff-Explainer (ExplanationLP) Yes 42.95 
Close Modal

or Create an Account

Close Modal
Close Modal