Skip to Main Content
Table 1:
Natural logic relations (NatOps) and their set theoretic definitions.
NatOP: Name
.
Definition
.
⥮: Alternation
x
∩
y
= ⊘ ∧
x
∪
y
≠
U
⌣ : Cover
x
∩
y
≠ ⊘ ∧
x
∪
y
=
U
≡: Equivalence
x
=
y
⊑
: Forward Entailment
x
⊂
y
⋏
: Negation
x
∩
y
= ⊘ ∧
x
∪
y
=
U
⊒
: Reverse Entailment
x
⊃
y
⋕: Independence
All other cases
NatOP: Name
.
Definition
.
⥮: Alternation
x
∩
y
= ⊘ ∧
x
∪
y
≠
U
⌣ : Cover
x
∩
y
≠ ⊘ ∧
x
∪
y
=
U
≡: Equivalence
x
=
y
⊑
: Forward Entailment
x
⊂
y
⋏
: Negation
x
∩
y
= ⊘ ∧
x
∪
y
=
U
⊒
: Reverse Entailment
x
⊃
y
⋕: Independence
All other cases
View Large
Close Modal
Close Modal
This Feature Is Available To Subscribers Only
Sign In
or
Create an Account
Close Modal
Close Modal
This site uses cookies. By continuing to use our website, you are agreeing to
our privacy policy.
Accept