Alternative models’ evaluation performances with different LM base models and sentence embedding models (Sent Emb). All models are trained with the same ITI+SF+SI objective.
Base Model . | Sent Emb . | Clustering . | Disambiguation . | Span Detection . | |||
---|---|---|---|---|---|---|---|
Homogeneity . | F1 . | Acc . | Seq Acc . | Tkn Recall . | Tkn Acc . | ||
BART | MPNet | 0.6450 | 95.73 | 93.25 | 76.01 | 90.75 | 98.17 |
BART | BART | 0.4671 | 95.75 | 93.29 | 74.55 | 88.66 | 98.02 |
BERT | MPNet | 0.4879 | 91.42 | 86.36 | 56.05 | 78.19 | 97.34 |
Base Model . | Sent Emb . | Clustering . | Disambiguation . | Span Detection . | |||
---|---|---|---|---|---|---|---|
Homogeneity . | F1 . | Acc . | Seq Acc . | Tkn Recall . | Tkn Acc . | ||
BART | MPNet | 0.6450 | 95.73 | 93.25 | 76.01 | 90.75 | 98.17 |
BART | BART | 0.4671 | 95.75 | 93.29 | 74.55 | 88.66 | 98.02 |
BERT | MPNet | 0.4879 | 91.42 | 86.36 | 56.05 | 78.19 | 97.34 |