Skip to Main Content
Table 6: 

Alternative models’ evaluation performances with different LM base models and sentence embedding models (Sent Emb). All models are trained with the same ITI+SF+SI objective.

Base ModelSent EmbClusteringDisambiguationSpan Detection
HomogeneityF1AccSeq AccTkn RecallTkn Acc
BART MPNet 0.6450 95.73 93.25 76.01 90.75 98.17 
BART BART 0.4671 95.75 93.29 74.55 88.66 98.02 
BERT MPNet 0.4879 91.42 86.36 56.05 78.19 97.34 
Base ModelSent EmbClusteringDisambiguationSpan Detection
HomogeneityF1AccSeq AccTkn RecallTkn Acc
BART MPNet 0.6450 95.73 93.25 76.01 90.75 98.17 
BART BART 0.4671 95.75 93.29 74.55 88.66 98.02 
BERT MPNet 0.4879 91.42 86.36 56.05 78.19 97.34 
Close Modal

or Create an Account

Close Modal
Close Modal