Table 5: 

Evaluation results for debiasing multiple protected attributes using FaRM. Both configurations of FaRM outperform AdS (Basu Roy Chowdhury et al., 2021) in guarding protected attribute and intersectional group biases.

SetupPan16
Mention (y)Age (g1)Fairness (g1)Gender (g2)Fairness (g2)Inter. Groups (g1,g2)
F1↑MDL↓ΔF1↓MDL↑DP↓GapgRMSΔF1↓MDL↑DP↓GapgRMSΔF1↓MDL↑
BERTbase (fine-tuned) 88.6 6.8 14.9 196.4 0.06 0.009 16.5 192.0 0.04 0.014 20.7 117.2 
AdS 88.6 5.5 2.2 231.5 0.05 0.006 1.6 230.9 0.04 0.017 9.1 118.5 
FaRM (N-partition) 87.0 13.4 0.0 234.3 0.03 0.003 0.0 234.2 0.06 0.025 0.7 468.0 
FaRM (1-partition) 86.4 15.6 0.0 234.6 0.05 0.006 0.0 234.2 0.02 0.009 0.0 467.7 
SetupPan16
Mention (y)Age (g1)Fairness (g1)Gender (g2)Fairness (g2)Inter. Groups (g1,g2)
F1↑MDL↓ΔF1↓MDL↑DP↓GapgRMSΔF1↓MDL↑DP↓GapgRMSΔF1↓MDL↑
BERTbase (fine-tuned) 88.6 6.8 14.9 196.4 0.06 0.009 16.5 192.0 0.04 0.014 20.7 117.2 
AdS 88.6 5.5 2.2 231.5 0.05 0.006 1.6 230.9 0.04 0.017 9.1 118.5 
FaRM (N-partition) 87.0 13.4 0.0 234.3 0.03 0.003 0.0 234.2 0.06 0.025 0.7 468.0 
FaRM (1-partition) 86.4 15.6 0.0 234.6 0.05 0.006 0.0 234.2 0.02 0.009 0.0 467.7 
Close Modal

or Create an Account

Close Modal
Close Modal