Table 1.

Overview of data-driven MDD treatment response prediction studies. Relevant model performance metrics (BAC and R2) that were not reported by the studies but were possible to calculate from the reported values are included in parentheses. MDD - major depressive disorder, TRD - treatment-resistant depression, NDRI - norepinephrine-dopamine reuptake inhibitor, SSRI - selective serotonin reuptake inhibitor, SNRI - serotonin-norepinephrine reuptake inhibitor, rTMS - repetitive transcranial magnetic stimulation, tDCS - transcranial direct-current stimulation, ECT - electroconvulsive therapy, MADRS - Montgomery-Asberg Depression Rating Scale, HAMD - Hamilton Rating Scale for Depression, BDI - Beck Depression Inventory, QIDS-SR - Quick Inventory of Depressive Symptomatology—Self Report, ROI - region of interest, FC - functional connectivity, ICA - independent component analysis, SVM - support vector machine, LDA - linear discriminant analysis, CV - cross-validation, LOOCV - leave- one-out cross-validation, LOSOCV - leave-one-site-out cross-validation, Acc - accuracy, SE - sensitivity, SP - specificity, BAC - balanced accuracy, RMSE - root mean square error, dmPCF - dorsomedial prefrontal cortex, ACC - anterior cingulate cortex.

ReferenceSubjectsTreatmentModalityOutcome defintionFeaturesModelValidationPerformance
Jaworska et al. (2019)  51 MDD NDRI (bupropion), SSRI (escitalopram), or combination of both rsEEG Response: ≥50% ↓ in MADRS Demographics, baseline, & Week 1 clinical data, EEG power features, current source density Random forest 10-fold CV Acc 88% 
SE 77% 
SP 99% 
Zhdanov et al. (2020)  122 MDD SSRI (escitalopram) rsEEG Response: ≥50% ↓ in MADRS Electrode-level & source-level spectral features, multiscale entropy-based & microstate-based features SVM Leave-one-site-out CV (LOSOCV) BAC 79% 
SE 67% 
SP 91% 
Khodayari-Rostamabad et al. (2010)  22 MDD SSRI (mainly sertraline) rsEEG Response: ≥25% ↓ in HAMD-17 Spectral coherence, mutual information between electrode pairs, absolute & relative power spectral density Kernel partial least squares regression Nested CV Acc 87% 
SE 88% 
SP 86% 
Khodayari-Rostamabad et al. (2013)  22 TRD SSRI (sertraline, citalopram, fluvoxamine, or paroxetine) rsEEG Response: ≥30% ↓ in HAMD-17 Power spectral density, squared spectral coherence, mutual information, left-to-right hemispheres, & anterior/posterior power ratio Mixture of factor analysis k-fold CV Acc 88% 
SE 95% 
SP 81% 
Rabinoff et al. (2011)  25 MDD SSRI (fluoxetine) or SNRI (venlafaxine) rsEEG Response: HAMD-17 ≤ 10 Absolute & relative power, cordance features Classification and regression trees (CART) LOOCV BAC 93% 
SE 85% 
SP 100% 
Shahabi, Shalbaf, and Maghsoudi (2021)  30 MDD SSRI (type not specified) rsEEG Response: ≥50% ↓ in BDI 3D images constructed from EEG signal Convolutional neural networks 10-fold CV Acc 97% 
SE 96% 
SP 97% 
W. Wu et al. (2020)  109 MDD (sertraline), 119 MDD (placebo) SSRI (sertraline) rsEEG Δ in HAMD-17 Theta, alpha, beta, gamma band power of latent signal Linear regression 10-fold CV (R2 = 0.36) 
r = 0.60 
RMSE = 5.68 
p = 2.88 × 10−11 
Rajpurkar et al. (2020)  518 MDD SSRI (escitalopram, sertraline) or SNRI (venlafaxine) rsEEG Δ in HAMD-21 (individual symptoms) Absolute & relative power of delta, theta, alpha, beta, & gamma frequency bands in frontal & occipital regions Gradient-boosted decision trees (GBDT) 5-fold stratified CV Concordance index of ≥0.8 on 12 out of 21 symptoms 
R2 0.3–0.7 
Khodayari-Rostamabad, Reilly, Hasey, de Bruin, and MacCrimmon (2011)  27 TRD rTMS rsEEG Response: ≥50% ↓ in HAMD-17 Anterior/posterior power ratios at various frequencies Mixture of factor analysis k-fold CV Acc 80% 
(BAC 81%) 
SE 78% 
SP 83% 
N. Bailey et al. (2019)  50 TRD rTMS rsEEG Response: ≥50% ↓ in HAMD-17 Mood features, theta & alpha power & connectivity, frontal theta cordance & alpha peak frequency SVM 5-fold CV BAC 86% 
SE 84% 
SP 89% 
Hasanzadeh et al. (2019)  46 MDD rTMS rsEEG Response: ≥50% ↓ in HAMD-17 or BDI-II Nonlinear, power spectral density, bispectrum, frontal & prefrontal cordance k-nearest neighbors LOOCV BAC 91% 
SE 87% 
SP 96% 
Al-Kaysi et al. (2017)  10 MDD tDCS rsEEG Response: ≥50% ↓ in MADRS Power spectral density in delta, theta, alpha, beta, & gamma frequency bands SVM, LDA, extreme learning machine LOOCV Mood Labels Channels FC4-AF8: Acc 76%; Cognition Labels Channels CPz-CP2: Acc 92% 
Tian et al. (2020)  106 MDD SSRI (escitalopram) rsfMRI Response: ≥50% ↓ in HAMD-17 Multilayer modularity framework applied to the whole brain to obtain measures of functional integration & segregation among 95 ROIs SVM Leave-one-site-out CV (LOSOCV) BAC 71% 
Klöbl et al. (2020)  29 MDD SSRI (escitalopram) rsfMRI Δ in HAMD-17; Response: ≥50% ↓ in HAMD-17; Remission: HAMD-17 ≤ 7 Whole-brain FC Linear regression k-fold CV HAMD-sum: r = 0.51 
Response: BAC 60%, AUC 68% 
Remission: BAC 68%, AUC 73% 
Chin Fatt et al. (2020)  132 MDD (sertraline), 132 MDD (placebo) SSRI (sertraline) rsfMRI Δ in HAMD-17 Cortical & subcortical seed-based FC Linear mixed model LOOCV (R2 = 0.05–0.13) 
r = 0.22–0.36 
Korgaonkar et al. (2020)  163 MDD SSRI (escitalopram, sertraline) or SNRI (venlafaxine) rsfMRI Remission: HAMD-17 ≤ 7 Whole-brain network intrinsic FC Logistic regression Hold-out test set Average connectivity measures: 
Acc 69% 
(BAC 67%) 
SE 58% 
SP 76% 
Individual network connectivity: 
Acc 69% 
(BAC 68%) 
SE 63% 
SP 72% 
Nemati et al. (2020)  99 MDD (sertraline), 103 MDD (placebo), & 19 MDD (ketamine), 19 MDD (active control), 18 MDD (inactive control) SSRI (sertraline), ketamine rsfMRI Δ in HAMD-17 Network restricted connectivity Network restricted strength predictive (linear) model 10-fold CV Sertraline (vs. placebo): r = 0.27 (R2 = 0.07), p = 0.003; Ketamine (vs. active placebo): r = 0.57 (R2 = 0.32), p = 0.0002 
Fan et al. (2020)  97 MDD (sertraline), 103 MDD (placebo) SSRI (sertraline) rsfMRI Δ in HAMD-17 (%) Network restricted connectivity Network restricted strength predictive (linear) model 10-fold CV Response to sertaline or placebo: (R2 = 0.04) r = 0.19, p = 0.03 
Ju et al. (2020)  108 MDD Various drugs; primarily: paroxetine, other SSRIs, sedative hypnotics, NDRI (bupropion) rsEEG Δ in HAMD-24 Whole-brain FC matrices Connectome-based predictive modeling LOOCV r = 0.43 (R2 = 0.19), p = 2.73 × 10−6 
Kong et al. (2021)  82 MDD Antidepressants (type not specified) rsfMRI Response: >50% ↓ in HAMD-21 Dynamic functional networks Spatiotemporal graph convolutional network 10-fold CV Acc 90% 
(BAC 89%) 
SE 85% 
SP 93% 
Drysdale et al. (2017)  154 MDD rTMS rsfMRI Response: ≥50% ↓ in HAMD-17 Whole-brain FC matrices & biotype diagnosis SVM LOOCV Only FC feature: Acc 78.3% 
FC features & biotype diagnosis: Acc 89.6% 
Van Waarde et al. (2015)  45 severe/TRD ECT rsfMRI Remission: MADRS score ≤ 10 Standard group ICA extracted 25 rs-networks. Each network was used to train a classifier SVM LOOCV Two rs-networks had significant accuracy: dmPFC: BAC 85%; SE 84%; SP 85%; ACC: BAC 78%; SE 80%; SP 75% 
Leaver et al. (2018)  46 TRD ECT rsfMRI, sMRI, arterial spin labeled fMRI Response: average % improvement in HAMD-17, MADRS, and QIDS-SR. Split point was 42.2% reduction. Mean voxelwise cerebral blood flow, regional homogeneity, fractional amplitude of low-frequency fluctuations, gray matter volume SVM Nested CV BAC 58–68% 
SE 54–64% 
SP 55–74% 
Sun et al. (2020)  122 MDD or bipolar disorder ECT rsfMRI Δ in HAMD-17; Remission: HAMD-17 score < 7 Negatively & positively correlated FC networks based on whole-brain rsFC Linear regression LOOCV Negative FC networks: 
r = 0.51 
(R2 = 0.26) 
Acc 76% 
(BAC 72%) 
SE 51% 
SP 92% 
ReferenceSubjectsTreatmentModalityOutcome defintionFeaturesModelValidationPerformance
Jaworska et al. (2019)  51 MDD NDRI (bupropion), SSRI (escitalopram), or combination of both rsEEG Response: ≥50% ↓ in MADRS Demographics, baseline, & Week 1 clinical data, EEG power features, current source density Random forest 10-fold CV Acc 88% 
SE 77% 
SP 99% 
Zhdanov et al. (2020)  122 MDD SSRI (escitalopram) rsEEG Response: ≥50% ↓ in MADRS Electrode-level & source-level spectral features, multiscale entropy-based & microstate-based features SVM Leave-one-site-out CV (LOSOCV) BAC 79% 
SE 67% 
SP 91% 
Khodayari-Rostamabad et al. (2010)  22 MDD SSRI (mainly sertraline) rsEEG Response: ≥25% ↓ in HAMD-17 Spectral coherence, mutual information between electrode pairs, absolute & relative power spectral density Kernel partial least squares regression Nested CV Acc 87% 
SE 88% 
SP 86% 
Khodayari-Rostamabad et al. (2013)  22 TRD SSRI (sertraline, citalopram, fluvoxamine, or paroxetine) rsEEG Response: ≥30% ↓ in HAMD-17 Power spectral density, squared spectral coherence, mutual information, left-to-right hemispheres, & anterior/posterior power ratio Mixture of factor analysis k-fold CV Acc 88% 
SE 95% 
SP 81% 
Rabinoff et al. (2011)  25 MDD SSRI (fluoxetine) or SNRI (venlafaxine) rsEEG Response: HAMD-17 ≤ 10 Absolute & relative power, cordance features Classification and regression trees (CART) LOOCV BAC 93% 
SE 85% 
SP 100% 
Shahabi, Shalbaf, and Maghsoudi (2021)  30 MDD SSRI (type not specified) rsEEG Response: ≥50% ↓ in BDI 3D images constructed from EEG signal Convolutional neural networks 10-fold CV Acc 97% 
SE 96% 
SP 97% 
W. Wu et al. (2020)  109 MDD (sertraline), 119 MDD (placebo) SSRI (sertraline) rsEEG Δ in HAMD-17 Theta, alpha, beta, gamma band power of latent signal Linear regression 10-fold CV (R2 = 0.36) 
r = 0.60 
RMSE = 5.68 
p = 2.88 × 10−11 
Rajpurkar et al. (2020)  518 MDD SSRI (escitalopram, sertraline) or SNRI (venlafaxine) rsEEG Δ in HAMD-21 (individual symptoms) Absolute & relative power of delta, theta, alpha, beta, & gamma frequency bands in frontal & occipital regions Gradient-boosted decision trees (GBDT) 5-fold stratified CV Concordance index of ≥0.8 on 12 out of 21 symptoms 
R2 0.3–0.7 
Khodayari-Rostamabad, Reilly, Hasey, de Bruin, and MacCrimmon (2011)  27 TRD rTMS rsEEG Response: ≥50% ↓ in HAMD-17 Anterior/posterior power ratios at various frequencies Mixture of factor analysis k-fold CV Acc 80% 
(BAC 81%) 
SE 78% 
SP 83% 
N. Bailey et al. (2019)  50 TRD rTMS rsEEG Response: ≥50% ↓ in HAMD-17 Mood features, theta & alpha power & connectivity, frontal theta cordance & alpha peak frequency SVM 5-fold CV BAC 86% 
SE 84% 
SP 89% 
Hasanzadeh et al. (2019)  46 MDD rTMS rsEEG Response: ≥50% ↓ in HAMD-17 or BDI-II Nonlinear, power spectral density, bispectrum, frontal & prefrontal cordance k-nearest neighbors LOOCV BAC 91% 
SE 87% 
SP 96% 
Al-Kaysi et al. (2017)  10 MDD tDCS rsEEG Response: ≥50% ↓ in MADRS Power spectral density in delta, theta, alpha, beta, & gamma frequency bands SVM, LDA, extreme learning machine LOOCV Mood Labels Channels FC4-AF8: Acc 76%; Cognition Labels Channels CPz-CP2: Acc 92% 
Tian et al. (2020)  106 MDD SSRI (escitalopram) rsfMRI Response: ≥50% ↓ in HAMD-17 Multilayer modularity framework applied to the whole brain to obtain measures of functional integration & segregation among 95 ROIs SVM Leave-one-site-out CV (LOSOCV) BAC 71% 
Klöbl et al. (2020)  29 MDD SSRI (escitalopram) rsfMRI Δ in HAMD-17; Response: ≥50% ↓ in HAMD-17; Remission: HAMD-17 ≤ 7 Whole-brain FC Linear regression k-fold CV HAMD-sum: r = 0.51 
Response: BAC 60%, AUC 68% 
Remission: BAC 68%, AUC 73% 
Chin Fatt et al. (2020)  132 MDD (sertraline), 132 MDD (placebo) SSRI (sertraline) rsfMRI Δ in HAMD-17 Cortical & subcortical seed-based FC Linear mixed model LOOCV (R2 = 0.05–0.13) 
r = 0.22–0.36 
Korgaonkar et al. (2020)  163 MDD SSRI (escitalopram, sertraline) or SNRI (venlafaxine) rsfMRI Remission: HAMD-17 ≤ 7 Whole-brain network intrinsic FC Logistic regression Hold-out test set Average connectivity measures: 
Acc 69% 
(BAC 67%) 
SE 58% 
SP 76% 
Individual network connectivity: 
Acc 69% 
(BAC 68%) 
SE 63% 
SP 72% 
Nemati et al. (2020)  99 MDD (sertraline), 103 MDD (placebo), & 19 MDD (ketamine), 19 MDD (active control), 18 MDD (inactive control) SSRI (sertraline), ketamine rsfMRI Δ in HAMD-17 Network restricted connectivity Network restricted strength predictive (linear) model 10-fold CV Sertraline (vs. placebo): r = 0.27 (R2 = 0.07), p = 0.003; Ketamine (vs. active placebo): r = 0.57 (R2 = 0.32), p = 0.0002 
Fan et al. (2020)  97 MDD (sertraline), 103 MDD (placebo) SSRI (sertraline) rsfMRI Δ in HAMD-17 (%) Network restricted connectivity Network restricted strength predictive (linear) model 10-fold CV Response to sertaline or placebo: (R2 = 0.04) r = 0.19, p = 0.03 
Ju et al. (2020)  108 MDD Various drugs; primarily: paroxetine, other SSRIs, sedative hypnotics, NDRI (bupropion) rsEEG Δ in HAMD-24 Whole-brain FC matrices Connectome-based predictive modeling LOOCV r = 0.43 (R2 = 0.19), p = 2.73 × 10−6 
Kong et al. (2021)  82 MDD Antidepressants (type not specified) rsfMRI Response: >50% ↓ in HAMD-21 Dynamic functional networks Spatiotemporal graph convolutional network 10-fold CV Acc 90% 
(BAC 89%) 
SE 85% 
SP 93% 
Drysdale et al. (2017)  154 MDD rTMS rsfMRI Response: ≥50% ↓ in HAMD-17 Whole-brain FC matrices & biotype diagnosis SVM LOOCV Only FC feature: Acc 78.3% 
FC features & biotype diagnosis: Acc 89.6% 
Van Waarde et al. (2015)  45 severe/TRD ECT rsfMRI Remission: MADRS score ≤ 10 Standard group ICA extracted 25 rs-networks. Each network was used to train a classifier SVM LOOCV Two rs-networks had significant accuracy: dmPFC: BAC 85%; SE 84%; SP 85%; ACC: BAC 78%; SE 80%; SP 75% 
Leaver et al. (2018)  46 TRD ECT rsfMRI, sMRI, arterial spin labeled fMRI Response: average % improvement in HAMD-17, MADRS, and QIDS-SR. Split point was 42.2% reduction. Mean voxelwise cerebral blood flow, regional homogeneity, fractional amplitude of low-frequency fluctuations, gray matter volume SVM Nested CV BAC 58–68% 
SE 54–64% 
SP 55–74% 
Sun et al. (2020)  122 MDD or bipolar disorder ECT rsfMRI Δ in HAMD-17; Remission: HAMD-17 score < 7 Negatively & positively correlated FC networks based on whole-brain rsFC Linear regression LOOCV Negative FC networks: 
r = 0.51 
(R2 = 0.26) 
Acc 76% 
(BAC 72%) 
SE 51% 
SP 92% 
Close Modal

or Create an Account

Close Modal
Close Modal