Skip to Main Content
Table 2

Hyperparameter tuning for adaptive estimators. We train on Muc7T A and evaluate on its development set. t denotes the total time for training and prediction on the whole dataset. Best parameters are marked by * and the best scores are highlighted in bold. We report the mean absolute error (MAE), the rooted mean squared error (RMSE), Spearman’s ρ, and the coefficient of determination (R2).

NameFeaturesMAERMSER2ρt
RR(α = 0.5 ) BOW 1.85 2.96 0.47 0.73 0.42 
RR(α = 0.5 ) S-BERT 1.92 2.84 0.51 0.79 0.04 
RR(α = 1 ) BOW 1.80 2.91 0.49 0.74 0.41 
RR(α = 1 ) * S-BERT 1.89 2.82 0.52 0.79 0.04 
GP(kernel=Dot + White) BOW 1.82 2.93 0.48 0.74 257.67 
GP(kernel=Dot + White) * S-BERT 1.80 2.76 0.54 0.81 14.35 
GP(kernel=RBF(1.0) BOW 5.33 6.71 −1.73 −0.12 300.38 
GP(kernel=RBF(1.0) S-BERT 5.33 6.71 −1.73 −0.12 32.66 
GBM BOW 2.07 3.26 0.36 0.68 0.25 
GBM * S-BERT 1.83 2.83 0.52 0.79 2.98 
NameFeaturesMAERMSER2ρt
RR(α = 0.5 ) BOW 1.85 2.96 0.47 0.73 0.42 
RR(α = 0.5 ) S-BERT 1.92 2.84 0.51 0.79 0.04 
RR(α = 1 ) BOW 1.80 2.91 0.49 0.74 0.41 
RR(α = 1 ) * S-BERT 1.89 2.82 0.52 0.79 0.04 
GP(kernel=Dot + White) BOW 1.82 2.93 0.48 0.74 257.67 
GP(kernel=Dot + White) * S-BERT 1.80 2.76 0.54 0.81 14.35 
GP(kernel=RBF(1.0) BOW 5.33 6.71 −1.73 −0.12 300.38 
GP(kernel=RBF(1.0) S-BERT 5.33 6.71 −1.73 −0.12 32.66 
GBM BOW 2.07 3.26 0.36 0.68 0.25 
GBM * S-BERT 1.83 2.83 0.52 0.79 2.98 
Close Modal

or Create an Account

Close Modal
Close Modal