Hyperparameter tuning for adaptive estimators. We train on Muc7T A and evaluate on its development set. t denotes the total time for training and prediction on the whole dataset. Best parameters are marked by * and the best scores are highlighted in bold. We report the mean absolute error (MAE), the rooted mean squared error (RMSE), Spearman’s ρ, and the coefficient of determination (R2).
Name . | Features . | MAE . | RMSE . | R2 . | ρ . | t . |
---|---|---|---|---|---|---|
RR(α = 0.5 ) | BOW | 1.85 | 2.96 | 0.47 | 0.73 | 0.42 |
RR(α = 0.5 ) | S-BERT | 1.92 | 2.84 | 0.51 | 0.79 | 0.04 |
RR(α = 1 ) | BOW | 1.80 | 2.91 | 0.49 | 0.74 | 0.41 |
RR(α = 1 ) * | S-BERT | 1.89 | 2.82 | 0.52 | 0.79 | 0.04 |
GP(kernel=Dot + White) | BOW | 1.82 | 2.93 | 0.48 | 0.74 | 257.67 |
GP(kernel=Dot + White) * | S-BERT | 1.80 | 2.76 | 0.54 | 0.81 | 14.35 |
GP(kernel=RBF(1.0) | BOW | 5.33 | 6.71 | −1.73 | −0.12 | 300.38 |
GP(kernel=RBF(1.0) | S-BERT | 5.33 | 6.71 | −1.73 | −0.12 | 32.66 |
GBM | BOW | 2.07 | 3.26 | 0.36 | 0.68 | 0.25 |
GBM * | S-BERT | 1.83 | 2.83 | 0.52 | 0.79 | 2.98 |
Name . | Features . | MAE . | RMSE . | R2 . | ρ . | t . |
---|---|---|---|---|---|---|
RR(α = 0.5 ) | BOW | 1.85 | 2.96 | 0.47 | 0.73 | 0.42 |
RR(α = 0.5 ) | S-BERT | 1.92 | 2.84 | 0.51 | 0.79 | 0.04 |
RR(α = 1 ) | BOW | 1.80 | 2.91 | 0.49 | 0.74 | 0.41 |
RR(α = 1 ) * | S-BERT | 1.89 | 2.82 | 0.52 | 0.79 | 0.04 |
GP(kernel=Dot + White) | BOW | 1.82 | 2.93 | 0.48 | 0.74 | 257.67 |
GP(kernel=Dot + White) * | S-BERT | 1.80 | 2.76 | 0.54 | 0.81 | 14.35 |
GP(kernel=RBF(1.0) | BOW | 5.33 | 6.71 | −1.73 | −0.12 | 300.38 |
GP(kernel=RBF(1.0) | S-BERT | 5.33 | 6.71 | −1.73 | −0.12 | 32.66 |
GBM | BOW | 2.07 | 3.26 | 0.36 | 0.68 | 0.25 |
GBM * | S-BERT | 1.83 | 2.83 | 0.52 | 0.79 | 2.98 |