Table 2

Relation extraction results on the TACRED test partition. We used the pre-trained SpanBERT-large. Our full model trains on the entire training partition using the SSL method discussed in Section 3.2.1. The “burn-in only” setting trains just on the training subset that has annotations from rules.

ApproachPrecisionRecallF1
Baselines 
Rules 85.82 24.21 37.77 
SpanBERT (Joshi et al. 2020) 69.97 ± 0.58 70.20 ± 1.73 70.07 ± 0.73 
Unsupervised Rationale 69.24 ± 0.40 69.05 ± 1.86 69.14 ± 0.83 
 
Our Approach 
Burn-in Only 51.06 ± 3.57 48.32 ± 2.33 49.61 ± 2.42 
Full Model 72.02 ± 0.90 69.11 ± 1.82 70.52 ± 0.54 
ApproachPrecisionRecallF1
Baselines 
Rules 85.82 24.21 37.77 
SpanBERT (Joshi et al. 2020) 69.97 ± 0.58 70.20 ± 1.73 70.07 ± 0.73 
Unsupervised Rationale 69.24 ± 0.40 69.05 ± 1.86 69.14 ± 0.83 
 
Our Approach 
Burn-in Only 51.06 ± 3.57 48.32 ± 2.33 49.61 ± 2.42 
Full Model 72.02 ± 0.90 69.11 ± 1.82 70.52 ± 0.54 
Close Modal

or Create an Account

Close Modal
Close Modal