Table 3

Relation extraction results on the CoNLL04 test partition. We used the pre-trained SpanBERT-large. Our full model trains on the entire training partition using the SSL method discussed in Section 3.2.1. The “burn-in only” setting trains just on the training subset that has annotations from rules.

ApproachPrecisionRecallF1
Baselines 
Rules 81.6 16.82 27.90 
SpanBERT (Joshi et al. 2020) 81.30 ± 4.89 71.01 ± 5.11 75.78 ± 4.79 
Unsupervised Rationale 83.91 ± 2.88 74.88 ± 1.44 79.11 ± 1.01 
 
Our Approach 
Burn-in Only 62.71 ± 2.27 53.32 ± 0.95 57.63 ± 1.39 
Full Model 83.01 ± 2.16 76.30 ± 3.08 79.46 ± 0.92 
ApproachPrecisionRecallF1
Baselines 
Rules 81.6 16.82 27.90 
SpanBERT (Joshi et al. 2020) 81.30 ± 4.89 71.01 ± 5.11 75.78 ± 4.79 
Unsupervised Rationale 83.91 ± 2.88 74.88 ± 1.44 79.11 ± 1.01 
 
Our Approach 
Burn-in Only 62.71 ± 2.27 53.32 ± 0.95 57.63 ± 1.39 
Full Model 83.01 ± 2.16 76.30 ± 3.08 79.46 ± 0.92 
Close Modal

or Create an Account

Close Modal
Close Modal